File size: 5,199 Bytes
caf8c54
8f760dd
 
caf8c54
 
 
 
9aefc52
1a41311
 
caf8c54
1a41311
caf8c54
1a41311
 
 
 
caf8c54
1a41311
caf8c54
 
9aefc52
 
 
caf8c54
 
 
 
9aefc52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf8c54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
yf_docs = """
# YFinance UPDATED API DOCUMENTATION
# Always refer the following updated documentation for writing python code to call yf api
## Single Ticker Usage

```python
import yfinance as yf
ticker = yf.Ticker('MSFT')
data = ticker.history(period='6mo')
data.columns, data.shape 
```
Returns:
```python
(Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Dividends', 'Stock Splits'], dtype='object'),
 (126, 7))
 ```
## Multi-Ticker Usage

# Get historical market data for multiple tickers:

```python
tickers = yf.Tickers('MSFT AAPL')
data = tickers.history(period='6mo')
data.columns,data.shape
```

Returns:
```python
(MultiIndex([(       'Close', 'AAPL'),
             (       'Close', 'MSFT'),
             (   'Dividends', 'AAPL'),
             (   'Dividends', 'MSFT'),
             (        'High', 'AAPL'),
             (        'High', 'MSFT'),
             (         'Low', 'AAPL'),
             (         'Low', 'MSFT'),
             (        'Open', 'AAPL'),
             (        'Open', 'MSFT'),
             ('Stock Splits', 'AAPL'),
             ('Stock Splits', 'MSFT'),
             (      'Volume', 'AAPL'),
             (      'Volume', 'MSFT')],
            names=['Price', 'Ticker']),
 (126, 14))
```

### News

Get news for multiple tickers:

```python
tickers = yf.Tickers('MSFT AAPL GOOG')
news = tickers.news()
```

Returns:
```python

- MSFT: list
- AAPL: list
- GOOG: list
```

## Single Ticker Methods

### Info

```python
ticker.info
```

Returns:
```python

- address1: str
- city: str
- state: str
- zip: str
- country: str
- phone: str
- website: str
- industry: str
- industryKey: str
- industryDisp: str
- sector: str
- sectorKey: str
- sectorDisp: str
- longBusinessSummary: str
- fullTimeEmployees: int
- companyOfficers: list
- auditRisk: int
- boardRisk: int
- compensationRisk: int
- shareHolderRightsRisk: int
- overallRisk: int
- governanceEpochDate: int
- compensationAsOfEpochDate: int
- irWebsite: str
- maxAge: int
- priceHint: int
- previousClose: float
- open: float
- dayLow: float
- dayHigh: float
- regularMarketPreviousClose: float
- regularMarketOpen: float
- regularMarketDayLow: float
- regularMarketDayHigh: float
- dividendRate: float
- dividendYield: float
- exDividendDate: int
- payoutRatio: float
- fiveYearAvgDividendYield: float
- beta: float
- trailingPE: float
- forwardPE: float
- volume: int
- regularMarketVolume: int
- averageVolume: int
- averageVolume10days: int
- averageDailyVolume10Day: int
- bid: float
- ask: float
- bidSize: int
- askSize: int
- marketCap: int
- fiftyTwoWeekLow: float
- fiftyTwoWeekHigh: float
- priceToSalesTrailing12Months: float
- fiftyDayAverage: float
- twoHundredDayAverage: float
- currency: str
- enterpriseValue: int
- profitMargins: float
- floatShares: int
- sharesOutstanding: int
- sharesShort: int
- sharesShortPriorMonth: int
- sharesShortPreviousMonthDate: int
- dateShortInterest: int
- sharesPercentSharesOut: float
- heldPercentInsiders: float
- heldPercentInstitutions: float
- shortRatio: float
- shortPercentOfFloat: float
- impliedSharesOutstanding: int
- bookValue: float
- priceToBook: float
- lastFiscalYearEnd: int
- nextFiscalYearEnd: int
- mostRecentQuarter: int
- earningsQuarterlyGrowth: float
- netIncomeToCommon: int
- trailingEps: float
- forwardEps: float
- lastSplitFactor: str
- lastSplitDate: int
- enterpriseToRevenue: float
- enterpriseToEbitda: float
- 52WeekChange: float
- SandP52WeekChange: float
- lastDividendValue: float
- lastDividendDate: int
- exchange: str
- quoteType: str
- symbol: str
- underlyingSymbol: str
- shortName: str
- longName: str
- firstTradeDateEpochUtc: int
- timeZoneFullName: str
- timeZoneShortName: str
- uuid: str
- messageBoardId: str
- gmtOffSetMilliseconds: int
- currentPrice: float
- targetHighPrice: float
- targetLowPrice: float
- targetMeanPrice: float
- targetMedianPrice: float
- recommendationMean: float
- recommendationKey: str
- numberOfAnalystOpinions: int
- totalCash: int
- totalCashPerShare: float
- ebitda: int
- totalDebt: int
- quickRatio: float
- currentRatio: float
- totalRevenue: int
- debtToEquity: float
- revenuePerShare: float
- returnOnAssets: float
- returnOnEquity: float
- grossProfits: int
- freeCashflow: int
- operatingCashflow: int
- earningsGrowth: float
- revenueGrowth: float
- grossMargins: float
- ebitdaMargins: float
- operatingMargins: float
- financialCurrency: str
- trailingPegRatio: float
```

### Financial Statements

#### Income Statement

```python
ticker.income_stmt
```

Returns:
```python

DataFrame with columns: [Timestamp('2024-06-30 00:00:00'), Timestamp('2023-06-30 00:00:00'), Timestamp('2022-06-30 00:00:00'), Timestamp('2021-06-30 00:00:00')]
Shape: (47, 4)

```

## Common Parameters

### Period Options

- `1d`: 1 day
- `5d`: 5 days
- `1mo`: 1 month
- `3mo`: 3 months
- `6mo`: 6 months
- `1y`: 1 year
- `2y`: 2 years
- `5y`: 5 years
- `10y`: 10 years
- `ytd`: Year to date
- `max`: Maximum available data

### Interval Options

- `1m`: 1 minute
- `2m`: 2 minutes
- `5m`: 5 minutes
- `15m`: 15 minutes
- `30m`: 30 minutes
- `60m`: 60 minutes
- `90m`: 90 minutes
- `1h`: 1 hour
- `1d`: 1 day
- `5d`: 5 days
- `1wk`: 1 week
- `1mo`: 1 month
- `3mo`: 3 months
"""