pvanand commited on
Commit
e7c011b
·
verified ·
1 Parent(s): 5dcd140

Update yf_docs.py

Browse files
Files changed (1) hide show
  1. yf_docs.py +0 -83
yf_docs.py CHANGED
@@ -269,87 +269,4 @@ Shape: (47, 4)
269
  - `1wk`: 1 week
270
  - `1mo`: 1 month
271
  - `3mo`: 3 months
272
-
273
-
274
- ####
275
- In dealing with financial data from multiple tickers, specifically using yfinance and pandas, the process can be broken down into a few key steps: downloading the data, organizing it in a structured format, and accessing it in a way that aligns with the user's needs. Below, the answer is organized into clear, actionable segments.
276
-
277
- Downloading Data for Multiple Tickers
278
- Direct Download and DataFrame Creation
279
- Single Ticker, Single DataFrame Approach:
280
-
281
- For individual tickers, the DataFrame downloaded directly from yfinance comes with single-level column names but lacks a ticker column. By iterating over each ticker, adding a ticker column, and then combining these into a single DataFrame, a clear structure for each ticker's data is maintained.
282
- import yfinance as yf
283
- import pandas as pd
284
-
285
- tickerStrings = ['AAPL', 'MSFT']
286
- df_list = []
287
- for ticker in tickerStrings:
288
- data = yf.download(ticker, group_by="Ticker", period='2d')
289
- data['ticker'] = ticker # Add ticker column
290
- df_list.append(data)
291
-
292
- # Combine all dataframes into a single dataframe
293
- df = pd.concat(df_list)
294
- df.to_csv('ticker.csv')
295
- Condensed Single DataFrame Approach:
296
-
297
- Achieve the same result as above with a one-liner using list comprehension, streamlining the process of fetching and combining data.
298
- # Download 2 days of data for each ticker in tickerStrings, add a 'ticker' column for identification, and concatenate into a single DataFrame with continuous indexing.
299
- df = pd.concat([yf.download(ticker, group_by="Ticker", period='2d').assign(ticker=ticker) for ticker in tickerStrings], ignore_index=True)
300
- Multi-Ticker, Structured DataFrame Approach
301
- When downloading data for multiple tickers simultaneously, yfinance groups data by ticker, resulting in a DataFrame with multi-level column headers. This structure can be reorganized for easier access.
302
- Unstacking Column Levels:
303
- # Define a list of ticker symbols to download
304
- tickerStrings = ['AAPL', 'MSFT']
305
-
306
- # Download 2 days of data for each ticker, grouping by 'Ticker' to structure the DataFrame with multi-level columns
307
- df = yf.download(tickerStrings, group_by='Ticker', period='2d')
308
-
309
- # Transform the DataFrame: stack the ticker symbols to create a multi-index (Date, Ticker), then reset the 'Ticker' level to turn it into a column
310
- df = df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
311
- Handling CSV Files with Multi-Level Column Names
312
- To read a CSV file that has been saved with yfinance data (which often includes multi-level column headers), adjustments are necessary to ensure the DataFrame is accessible in the desired format.
313
-
314
- Reading and Adjusting Multi-Level Columns:
315
- # Read the CSV file. The file has multi-level headers, hence header=[0, 1].
316
- df = pd.read_csv('test.csv', header=[0, 1])
317
-
318
- # Drop the first row as it contains only the Date information in one column, which is redundant after setting the index.
319
- df.drop(index=0, inplace=True)
320
-
321
- # Convert the 'Unnamed: 0_level_0', 'Unnamed: 0_level_1' column (which represents dates) to datetime format.
322
- # This assumes the dates are in the 'YYYY-MM-DD' format.
323
- df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')] = pd.to_datetime(df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')])
324
-
325
- # Set the datetime column as the index of the DataFrame. This makes time series analysis more straightforward.
326
- df.set_index(('Unnamed: 0_level_0', 'Unnamed: 0_level_1'), inplace=True)
327
-
328
- # Clear the name of the index to avoid confusion, as it previously referred to the multi-level column names.
329
- df.index.name = None
330
- Flattening Multi-Level Columns for Easier Access
331
- Depending on the initial structure of the DataFrame, multi-level columns many need to be flattened to a single level, adding clarity and simplicity to the dataset.
332
-
333
- Flattening and Reorganizing Based on Ticker Level:
334
- For DataFrames where the ticker symbol is at the top level of the column headers:
335
- df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
336
- If the ticker symbol is at the bottom level:
337
- df.stack(level=1).rename_axis(['Date', 'Ticker']).reset_index(level=1)
338
- Individual Ticker File Management
339
- For those preferring to manage each ticker's data separately, downloading and saving each ticker's data to individual files can be a straightforward approach.
340
-
341
- Downloading and Saving Individual Ticker Data:
342
- for ticker in tickerStrings:
343
- # Downloads historical market data from Yahoo Finance for the specified ticker.
344
- # The period ('prd') and interval ('intv') for the data are specified as string variables.
345
- data = yf.download(ticker, group_by="Ticker", period='prd', interval='intv')
346
-
347
- # Adds a new column named 'ticker' to the DataFrame. This column is filled with the ticker symbol.
348
- # This step is helpful for identifying the source ticker when multiple DataFrames are combined or analyzed separately.
349
- data['ticker'] = ticker
350
-
351
- # Saves the DataFrame to a CSV file. The file name is dynamically generated using the ticker symbol,
352
- # allowing each ticker's data to be saved in a separate file for easy access and identification.
353
- # For example, if the ticker symbol is 'AAPL', the file will be named 'ticker_AAPL.csv'.
354
- data.tocsv(f'ticker{ticker}.csv')
355
  """
 
269
  - `1wk`: 1 week
270
  - `1mo`: 1 month
271
  - `3mo`: 3 months
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
  """