import gradio as gr from huggingface_hub import InferenceClient from dotenv import load_dotenv import os # Load environment variables from .env file load_dotenv() # Get the system message from environment variables system_message = os.getenv("SYSTEM_MESSAGE") client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") def respond(message, history, max_tokens, temperature, top_p): # Prepare the initial message list with the system message messages = [{"role": "system", "content": system_message}] # Add the conversation history to the messages list for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add the latest user message to the messages list messages.append({"role": "user", "content": message}) # Initialize an empty response string response = "" # Generate the response using the Hugging Face InferenceClient for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ] ) # Launch the Gradio app if __name__ == "__main__": demo.launch()