File size: 1,357 Bytes
f0c41ac 6336d6e 699c498 8333f46 6336d6e f0c41ac 266355b 8333f46 6336d6e 699c498 73abb65 699c498 6336d6e f0c41ac 6336d6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
title: NLP_project
emoji: π£
colorFrom: indigo
colorTo: pink
sdk: streamlit
sdk_version: 1.31.0
app_file: app.py
pinned: false
---
# Streamlit app with neural network π‘
## Teamπ§π»βπ»
1. [Diachenko Ilia](https://github.com/DiaElijah)
2. [Nikita Yakubovskiy](https://github.com/Yani464)
## Task π
1. Create a service for classifying user-entered reviews of a medical institution using classical ML models and neural networks.
2. Create a service for assessing the degree of taxiness of user-entered text using the BERT model.
3. Horoscope generation using neural networks.
## Contents π€
1. For classifying user-entered reviews of a medical institution used πΎ [bert-base-cased](https://huggingface.co/Geotrend/bert-base-ru-cased)
2. Text toxicity meter π¦ [rubert-tiny-toxicity](https://huggingface.co/cointegrated/rubert-tiny-toxicity)
3. Horoscope engine is π½ [GPT2](https://colab.research.google.com/drive/1sD_hQJOi3CrHn7Ba-XuKkHRToxDRRSof?usp=sharing#scrollTo=D5Eezvzm_hrI)
## Libraries π
```python
import streamlit as st
import numpy as np
import pandas as pd
import time
import torch
import torch.nn as nn
from torch import tensor
import joblib
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, GPT2LMHeadModel, GPT2Tokenizer
import json
```
|