EliteGamerCJ commited on
Commit
2733058
·
verified ·
1 Parent(s): 3e3bcc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -60
app.py CHANGED
@@ -1,64 +1,44 @@
1
- import gradio as gr
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Request
2
+ from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
4
 
5
+ # Initialize FastAPI app
6
+ app = FastAPI()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ # Initialize Hugging Face Inference Client
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
+ # Define expected input format
12
+ class InputData(BaseModel):
13
+ message: str # User message sent from the frontend
14
+
15
+ # Define the API endpoint
16
+ @app.post("/api")
17
+ async def get_ai_response(data: InputData):
18
+ try:
19
+ # Extract the user message from the request body
20
+ user_message = data.message
21
+
22
+ # Prepare messages for the model
23
+ messages = [
24
+ {"role": "system", "content": "You are a friendly Chatbot."},
25
+ {"role": "user", "content": user_message}
26
+ ]
27
+
28
+ # Generate response using the Hugging Face Inference API
29
+ response = ""
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=512,
33
+ stream=True,
34
+ temperature=0.7,
35
+ top_p=0.95,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+ response += token
39
+
40
+ # Return the AI response as JSON
41
+ return {"response": response.strip()}
42
+ except Exception as e:
43
+ # Handle errors gracefully
44
+ return {"error": str(e)}