Create App.py
Browse files
App.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
| 4 |
+
|
| 5 |
+
# Load the fine-tuned BERT model
|
| 6 |
+
model_name = "/content/fine_tuned_bert_model"
|
| 7 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = BertForMaskedLM.from_pretrained(model_name)
|
| 9 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
+
# Function to answer questions using the fine-tuned model
|
| 12 |
+
def answer_question(context, question):
|
| 13 |
+
# Preprocess the context and question
|
| 14 |
+
context_tokens = tokenizer(context, truncation=True, padding="max_length", max_length=128, return_tensors="pt")
|
| 15 |
+
question_tokens = tokenizer(question, truncation=True, padding="max_length", max_length=16, return_tensors="pt")
|
| 16 |
+
|
| 17 |
+
# Move tensors to device
|
| 18 |
+
context_tokens = context_tokens.to(model.device)
|
| 19 |
+
question_tokens = question_tokens.to(model.device)
|
| 20 |
+
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
# Generate masked LM predictions for each token in the question
|
| 23 |
+
outputs = model(**question_tokens)
|
| 24 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
| 25 |
+
|
| 26 |
+
# Replace masked tokens in the question with predicted tokens
|
| 27 |
+
answer_tokens = []
|
| 28 |
+
for i in range(len(question_tokens["input_ids"][0])):
|
| 29 |
+
if question_tokens["input_ids"][0][i] == tokenizer.mask_token_id:
|
| 30 |
+
answer_tokens.append(predictions[0][i].item())
|
| 31 |
+
else:
|
| 32 |
+
answer_tokens.append(question_tokens["input_ids"][0][i].item())
|
| 33 |
+
|
| 34 |
+
# Decode tokens and remove special tokens
|
| 35 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
| 36 |
+
|
| 37 |
+
# Return the answer
|
| 38 |
+
return answer
|
| 39 |
+
|
| 40 |
+
# Define example questions
|
| 41 |
+
examples = [
|
| 42 |
+
["Where did the Enron scandal occur?", "The Enron scandal occurred in [MASK]."],
|
| 43 |
+
["What was the outcome of the Enron scandal?", "The outcome of the Enron scandal was [MASK]."],
|
| 44 |
+
["When did Enron file for bankruptcy?", "Enron filed for bankruptcy in [MASK]."],
|
| 45 |
+
["How did Enron's stock price change during the scandal?", "During the Enron scandal, Enron's stock price [MASK]."]
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
# Gradio interface with examples
|
| 49 |
+
iface = gr.Interface(
|
| 50 |
+
fn=answer_question,
|
| 51 |
+
inputs=["text", "text"],
|
| 52 |
+
outputs="text",
|
| 53 |
+
title="Enron Email Analysis",
|
| 54 |
+
description="Ask questions about the Enron email dataset using a fine-tuned BERT model.",
|
| 55 |
+
examples=examples
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Launch the Gradio interface
|
| 59 |
+
iface.launch(share=True)
|