Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from peft import PeftModel, PeftConfig
|
| 5 |
+
|
| 6 |
+
def load_model_with_lora(base_model_name, lora_path):
|
| 7 |
+
"""
|
| 8 |
+
Load base model and merge it with LoRA adapter
|
| 9 |
+
"""
|
| 10 |
+
# Load base model
|
| 11 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
base_model_name,
|
| 13 |
+
torch_dtype=torch.float16,
|
| 14 |
+
device_map="auto"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Load and merge LoRA adapter
|
| 18 |
+
model = PeftModel.from_pretrained(base_model, lora_path)
|
| 19 |
+
model = model.merge_and_unload() # Merge adapter weights with base model
|
| 20 |
+
|
| 21 |
+
return model
|
| 22 |
+
|
| 23 |
+
def load_tokenizer(base_model_name):
|
| 24 |
+
"""
|
| 25 |
+
Load tokenizer for the base model
|
| 26 |
+
"""
|
| 27 |
+
return AutoTokenizer.from_pretrained(base_model_name)
|
| 28 |
+
|
| 29 |
+
def generate_code(prompt, model, tokenizer, max_length=512, temperature=0.7):
|
| 30 |
+
"""
|
| 31 |
+
Generate code based on the prompt
|
| 32 |
+
"""
|
| 33 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 34 |
+
|
| 35 |
+
outputs = model.generate(
|
| 36 |
+
**inputs,
|
| 37 |
+
max_length=max_length,
|
| 38 |
+
temperature=temperature,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
pad_token_id=tokenizer.eos_token_id
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
+
|
| 45 |
+
# Initialize model and tokenizer
|
| 46 |
+
BASE_MODEL_NAME = "unsloth/Llama-3.2-3B-bnb-4bit" # Replace with your base model name
|
| 47 |
+
LORA_PATH = "EmTpro01/Llama-3.2-3B-peft" # Replace with your LoRA adapter path
|
| 48 |
+
|
| 49 |
+
model = load_model_with_lora(BASE_MODEL_NAME, LORA_PATH)
|
| 50 |
+
tokenizer = load_tokenizer(BASE_MODEL_NAME)
|
| 51 |
+
|
| 52 |
+
# Create Gradio interface
|
| 53 |
+
def gradio_generate(prompt, temperature, max_length):
|
| 54 |
+
return generate_code(prompt, model, tokenizer, max_length, temperature)
|
| 55 |
+
|
| 56 |
+
demo = gr.Interface(
|
| 57 |
+
fn=gradio_generate,
|
| 58 |
+
inputs=[
|
| 59 |
+
gr.Textbox(
|
| 60 |
+
lines=5,
|
| 61 |
+
placeholder="Enter your code generation prompt here...",
|
| 62 |
+
label="Prompt"
|
| 63 |
+
),
|
| 64 |
+
gr.Slider(
|
| 65 |
+
minimum=0.1,
|
| 66 |
+
maximum=1.0,
|
| 67 |
+
value=0.7,
|
| 68 |
+
step=0.1,
|
| 69 |
+
label="Temperature"
|
| 70 |
+
),
|
| 71 |
+
gr.Slider(
|
| 72 |
+
minimum=64,
|
| 73 |
+
maximum=2048,
|
| 74 |
+
value=512,
|
| 75 |
+
step=64,
|
| 76 |
+
label="Max Length"
|
| 77 |
+
)
|
| 78 |
+
],
|
| 79 |
+
outputs=gr.Code(language="python", label="Generated Code"),
|
| 80 |
+
title="Code Generation with LoRA",
|
| 81 |
+
description="Enter a prompt to generate code using a fine-tuned model with LoRA adapters",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
demo.launch()
|