Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,148 +1,31 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
-
from peft import PeftModel
|
5 |
-
import logging
|
6 |
-
import os
|
7 |
-
from huggingface_hub import snapshot_download
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
device_map="auto",
|
37 |
-
trust_remote_code=True
|
38 |
-
)
|
39 |
-
logger.info("Successfully loaded base model")
|
40 |
-
|
41 |
-
# Download and load LoRA adapter
|
42 |
-
lora_path = download_lora_weights()
|
43 |
-
logger.info(f"Downloaded LoRA weights to: {lora_path}")
|
44 |
-
|
45 |
-
# Load and merge LoRA adapter
|
46 |
-
model = PeftModel.from_pretrained(base_model, lora_path)
|
47 |
-
logger.info("Successfully loaded LoRA adapter")
|
48 |
-
|
49 |
-
# For inference, we can merge the LoRA weights with the base model
|
50 |
-
model = model.merge_and_unload()
|
51 |
-
logger.info("Successfully merged LoRA weights with base model")
|
52 |
-
|
53 |
-
return model
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
logger.error(f"Error loading model: {str(e)}")
|
57 |
-
raise RuntimeError(f"Failed to load model: {str(e)}")
|
58 |
-
|
59 |
-
def load_tokenizer():
|
60 |
-
"""
|
61 |
-
Load tokenizer for the Llama model
|
62 |
-
"""
|
63 |
-
try:
|
64 |
-
tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3.2-3b-bnb-4bit")
|
65 |
-
logger.info("Successfully loaded tokenizer")
|
66 |
-
return tokenizer
|
67 |
-
except Exception as e:
|
68 |
-
logger.error(f"Error loading tokenizer: {str(e)}")
|
69 |
-
raise RuntimeError(f"Failed to load tokenizer: {str(e)}")
|
70 |
-
|
71 |
-
def generate_code(prompt, model, tokenizer, max_length=512, temperature=0.7):
|
72 |
-
"""
|
73 |
-
Generate code based on the prompt
|
74 |
-
"""
|
75 |
-
try:
|
76 |
-
# Add any specific prompt template if needed
|
77 |
-
formatted_prompt = f"### Instruction: Write code for the following task:\n{prompt}\n\n### Response:"
|
78 |
-
|
79 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
80 |
-
|
81 |
-
outputs = model.generate(
|
82 |
-
**inputs,
|
83 |
-
max_length=max_length,
|
84 |
-
temperature=temperature,
|
85 |
-
do_sample=True,
|
86 |
-
top_p=0.95,
|
87 |
-
top_k=50,
|
88 |
-
repetition_penalty=1.1,
|
89 |
-
pad_token_id=tokenizer.eos_token_id
|
90 |
-
)
|
91 |
-
|
92 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
93 |
-
# Extract only the response part
|
94 |
-
response = generated_text.split("### Response:")[-1].strip()
|
95 |
-
return response
|
96 |
-
except Exception as e:
|
97 |
-
logger.error(f"Error during code generation: {str(e)}")
|
98 |
-
return f"Error generating code: {str(e)}"
|
99 |
-
|
100 |
-
# Initialize model and tokenizer
|
101 |
-
logger.info("Starting model initialization...")
|
102 |
-
model = load_model_with_lora()
|
103 |
-
tokenizer = load_tokenizer()
|
104 |
-
logger.info("Model initialization completed successfully")
|
105 |
-
|
106 |
-
# Create Gradio interface with error handling
|
107 |
-
def gradio_generate(prompt, temperature, max_length):
|
108 |
-
try:
|
109 |
-
return generate_code(prompt, model, tokenizer, max_length, temperature)
|
110 |
-
except Exception as e:
|
111 |
-
return f"Error: {str(e)}"
|
112 |
-
|
113 |
-
# Create the Gradio interface
|
114 |
-
demo = gr.Interface(
|
115 |
-
fn=gradio_generate,
|
116 |
-
inputs=[
|
117 |
-
gr.Textbox(
|
118 |
-
lines=5,
|
119 |
-
placeholder="Enter your code generation prompt here...",
|
120 |
-
label="Prompt"
|
121 |
-
),
|
122 |
-
gr.Slider(
|
123 |
-
minimum=0.1,
|
124 |
-
maximum=1.0,
|
125 |
-
value=0.7,
|
126 |
-
step=0.1,
|
127 |
-
label="Temperature"
|
128 |
-
),
|
129 |
-
gr.Slider(
|
130 |
-
minimum=64,
|
131 |
-
maximum=2048,
|
132 |
-
value=512,
|
133 |
-
step=64,
|
134 |
-
label="Max Length"
|
135 |
-
)
|
136 |
-
],
|
137 |
-
outputs=gr.Code(label="Generated Code"),
|
138 |
-
title="Llama Code Generation with LoRA",
|
139 |
-
description="Enter a prompt to generate code using Llama 3.2 3B model fine-tuned with LoRA",
|
140 |
-
examples=[
|
141 |
-
["Write a Python function to sort a list of numbers in ascending order"],
|
142 |
-
["Create a simple REST API using FastAPI that handles GET and POST requests"],
|
143 |
-
["Write a function to check if a string is a palindrome"]
|
144 |
-
]
|
145 |
-
)
|
146 |
-
|
147 |
-
if __name__ == "__main__":
|
148 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
model_name = "EmTpro01/Llama-3.2-3B-fine-tuned" # Replace with your Hugging Face model name
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define the prediction function
|
11 |
+
def generate_code(prompt):
|
12 |
+
# Tokenize the input
|
13 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
14 |
+
# Generate code
|
15 |
+
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1)
|
16 |
+
# Decode the output
|
17 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
return generated_code
|
19 |
+
|
20 |
+
# Set up Gradio interface
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
gr.Markdown("## Code Generation with Fine-Tuned Llama Model")
|
23 |
+
with gr.Row():
|
24 |
+
prompt = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt for code generation...")
|
25 |
+
output = gr.Textbox(label="Generated Code")
|
26 |
+
generate_button = gr.Button("Generate Code")
|
27 |
+
|
28 |
+
generate_button.click(generate_code, inputs=prompt, outputs=output)
|
29 |
+
|
30 |
+
# Launch the interface
|
31 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|