Spaces:
Running
Running
File size: 6,974 Bytes
19d4726 b149299 19d4726 b29b5d8 6875045 19d4726 b149299 19d4726 6875045 19d4726 6875045 19d4726 6875045 19d4726 6875045 19d4726 6875045 19d4726 6875045 19d4726 b29b5d8 19d4726 6875045 19d4726 b29b5d8 19d4726 b29b5d8 19d4726 b149299 6875045 19d4726 b29b5d8 19d4726 6795b3b 19d4726 b149299 e610b55 b149299 6875045 b149299 19d4726 6875045 b149299 19d4726 b149299 6447205 b149299 6447205 b149299 6447205 b149299 19d4726 6875045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import logging
import os
from pathlib import Path
from typing import List, Tuple
import gradio as gr
import pandas as pd
import spacy
import torch
from dante_tokenizer import DanteTokenizer
from transformers import AutoModelForTokenClassification, AutoTokenizer
from preprocessing import expand_contractions
try:
nlp = spacy.load("pt_core_news_sm")
except Exception:
os.system("python -m spacy download pt_core_news_sm")
nlp = spacy.load("pt_core_news_sm")
dt_tokenizer = DanteTokenizer()
default_model = "News"
model_choices = {
"News": "Emanuel/porttagger-news-base",
"Tweets": "Emanuel/porttagger-tweets-base",
"Oil and Gas": "Emanuel/porttagger-oilgas-base",
"Multigenre": "Emanuel/porttagger-base",
}
pre_tokenizers = {
"News": nlp,
"Tweets": dt_tokenizer.tokenize,
"Oil and Gas": nlp,
"Multigenre": nlp,
}
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
class MyApp:
def __init__(self) -> None:
self.model = None
self.tokenizer = None
self.pre_tokenizer = None
self.load_model()
def load_model(self, model_name: str = default_model):
if model_name not in model_choices.keys():
logger.error("Selected model is not supported, resetting to the default model.")
model_name = default_model
self.model = AutoModelForTokenClassification.from_pretrained(model_choices[model_name])
self.tokenizer = AutoTokenizer.from_pretrained(model_choices[model_name])
self.pre_tokenizer = pre_tokenizers[model_name]
myapp = MyApp()
def predict(text, logger=None) -> Tuple[List[str], List[str]]:
doc = myapp.pre_tokenizer(text)
tokens = [token.text if not isinstance(token, str) else token for token in doc]
logger.info("Starting predictions for sentence: {}".format(text))
print("Using model {}".format(myapp.model.config.__dict__["_name_or_path"]))
input_tokens = myapp.tokenizer(
tokens,
return_tensors="pt",
is_split_into_words=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
)
output = myapp.model(input_tokens["input_ids"])
i_token = 0
labels = []
scores = []
for off, is_special_token, pred in zip(
input_tokens["offset_mapping"][0],
input_tokens["special_tokens_mask"][0],
output.logits[0],
):
if is_special_token or off[0] > 0:
continue
label = myapp.model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
if logger is not None:
logger.info("{}, {}, {}".format(off, tokens[i_token], label))
labels.append(label)
scores.append(
"{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max()))
)
i_token += 1
return tokens, labels, scores
def text_analysis(text):
text = expand_contractions(text)
tokens, labels, scores = predict(text, logger)
if len(labels) != len(tokens):
m = len(tokens) - len(labels)
labels += [None] * m
scores += [0] * m
pos_count = pd.DataFrame(
{
"token": tokens,
"etiqueta": labels,
"confiança": scores,
}
)
pos_tokens = []
for token, label in zip(tokens, labels):
pos_tokens.extend([(token, label), (" ", None)])
output_highlighted.update(visible=True)
output_df.update(visible=True)
return {
output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)),
output_df: output_df.update(visible=True, value=pos_count),
}
def batch_analysis(input_file):
text = open(input_file.name, encoding="utf-8").read()
text = text.split("\n")
name = Path(input_file.name).stem
sents = []
for sent in text:
sub_sents = nlp(sent).sents
sub_sents = [str(_sent).strip() for _sent in sub_sents]
sents += sub_sents
conllu_output = []
for i, sent in enumerate(sents):
sent = expand_contractions(sent)
conllu_output.append("# sent_id = {}-{}\n".format(name, i + 1))
conllu_output.append("# text = {}\n".format(sent))
tokens, labels, scores = predict(sent, logger)
for j, (token, label) in enumerate(zip(tokens, labels)):
conllu_output.append(
"{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 5 + "\n"
)
conllu_output.append("\n")
output_filename = "output.conllu"
with open(output_filename, "w") as out_f:
out_f.writelines(conllu_output)
return {output_file: output_file.update(visible=True, value=output_filename)}
css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()
with gr.Blocks(css=css) as demo:
gr.HTML(top_html)
select_model = gr.Dropdown(choices=list(model_choices.keys()), label="Tagger model", value=default_model)
select_model.change(myapp.load_model, inputs=[select_model])
with gr.Tab("Single sentence"):
text = gr.Textbox(placeholder="Enter your text here...", label="Input")
examples = gr.Examples(
examples=[
[
"A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações."
],
[
"Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."
],
],
inputs=[text],
label="Select an example",
)
output_highlighted = gr.HighlightedText(label="Colorful output", visible=False)
output_df = gr.Dataframe(label="Tabular output", visible=False)
submit_btn = gr.Button("Tag it")
submit_btn.click(
fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df]
)
with gr.Tab("Multiple sentences"):
gr.HTML(
"""
<p>Upload a plain text file with sentences in it.
Find below an example of what we expect the content of the file to look like.
Sentences are automatically split by spaCy's sentencizer.
To force an explicit segmentation, manually separate the sentences using a new line for each one.</p>
"""
)
gr.Markdown(
"""
```
Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou:
– Vá e não tornes a pecar!
Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta.
```
"""
)
input_file = gr.File(label="Upload your input file here...")
output_file = gr.File(visible=False)
submit_btn_batch = gr.Button("Tag it")
submit_btn_batch.click(
fn=batch_analysis, inputs=input_file, outputs=output_file
)
gr.HTML(bottom_html)
demo.launch(debug=True)
|