File size: 6,974 Bytes
19d4726
 
b149299
19d4726
 
 
 
 
b29b5d8
6875045
19d4726
 
b149299
 
19d4726
 
 
 
 
6875045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d4726
 
 
6875045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d4726
6875045
 
 
19d4726
 
6875045
19d4726
6875045
19d4726
 
 
 
 
 
6875045
19d4726
 
 
b29b5d8
19d4726
 
 
 
 
 
 
6875045
19d4726
 
 
b29b5d8
 
 
19d4726
 
b29b5d8
19d4726
 
 
b149299
6875045
 
 
 
 
19d4726
 
 
 
b29b5d8
19d4726
 
 
 
 
 
6795b3b
 
 
 
 
 
 
19d4726
 
b149299
 
 
 
 
 
 
 
 
 
 
 
e610b55
b149299
 
6875045
b149299
 
 
 
 
 
 
 
 
 
 
 
 
19d4726
 
 
 
 
 
6875045
 
b149299
 
 
 
 
 
 
 
 
 
19d4726
b149299
 
 
 
 
6447205
b149299
 
 
 
 
 
6447205
 
 
 
b149299
 
 
 
 
 
 
 
 
 
 
 
 
6447205
b149299
 
 
 
19d4726
 
 
6875045
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import logging
import os
from pathlib import Path
from typing import List, Tuple

import gradio as gr
import pandas as pd
import spacy
import torch
from dante_tokenizer import DanteTokenizer
from transformers import AutoModelForTokenClassification, AutoTokenizer

from preprocessing import expand_contractions

try:
    nlp = spacy.load("pt_core_news_sm")
except Exception:
    os.system("python -m spacy download pt_core_news_sm")
    nlp = spacy.load("pt_core_news_sm")
dt_tokenizer = DanteTokenizer()

default_model = "News"
model_choices = {
    "News": "Emanuel/porttagger-news-base",
    "Tweets": "Emanuel/porttagger-tweets-base",
    "Oil and Gas": "Emanuel/porttagger-oilgas-base",
    "Multigenre": "Emanuel/porttagger-base",
}
pre_tokenizers = {
    "News": nlp,
    "Tweets": dt_tokenizer.tokenize,
    "Oil and Gas": nlp,
    "Multigenre": nlp,
}
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

class MyApp:
    def __init__(self) -> None:
        self.model = None
        self.tokenizer = None
        self.pre_tokenizer = None
        self.load_model()

    def load_model(self, model_name: str = default_model):
        if model_name not in model_choices.keys():
            logger.error("Selected model is not supported, resetting to the default model.")
            model_name = default_model
        self.model = AutoModelForTokenClassification.from_pretrained(model_choices[model_name])
        self.tokenizer = AutoTokenizer.from_pretrained(model_choices[model_name])
        self.pre_tokenizer = pre_tokenizers[model_name]

myapp = MyApp()

def predict(text, logger=None) -> Tuple[List[str], List[str]]:
    doc = myapp.pre_tokenizer(text)
    tokens = [token.text if not isinstance(token, str) else token for token in doc]

    logger.info("Starting predictions for sentence: {}".format(text))
    print("Using model {}".format(myapp.model.config.__dict__["_name_or_path"]))

    input_tokens = myapp.tokenizer(
        tokens,
        return_tensors="pt",
        is_split_into_words=True,
        return_offsets_mapping=True,
        return_special_tokens_mask=True,
    )
    output = myapp.model(input_tokens["input_ids"])

    i_token = 0
    labels = []
    scores = []
    for off, is_special_token, pred in zip(
        input_tokens["offset_mapping"][0],
        input_tokens["special_tokens_mask"][0],
        output.logits[0],
    ):
        if is_special_token or off[0] > 0:
            continue
        label = myapp.model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
        if logger is not None:
            logger.info("{}, {}, {}".format(off, tokens[i_token], label))
        labels.append(label)
        scores.append(
            "{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max()))
        )
        i_token += 1

    return tokens, labels, scores


def text_analysis(text):
    text = expand_contractions(text)
    tokens, labels, scores = predict(text, logger)
    if len(labels) != len(tokens):
        m = len(tokens) - len(labels)
        labels += [None] * m
        scores += [0] * m
    pos_count = pd.DataFrame(
        {
            "token": tokens,
            "etiqueta": labels,
            "confiança": scores,
        }
    )
    pos_tokens = []
    for token, label in zip(tokens, labels):
        pos_tokens.extend([(token, label), (" ", None)])

    output_highlighted.update(visible=True)
    output_df.update(visible=True)

    return {
        output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)),
        output_df: output_df.update(visible=True, value=pos_count),
    }


def batch_analysis(input_file):
    text = open(input_file.name, encoding="utf-8").read()
    text = text.split("\n")
    name = Path(input_file.name).stem
    sents = []
    for sent in text:
        sub_sents = nlp(sent).sents
        sub_sents = [str(_sent).strip() for _sent in sub_sents]
        sents += sub_sents
    conllu_output = []

    for i, sent in enumerate(sents):
        sent = expand_contractions(sent)
        conllu_output.append("# sent_id = {}-{}\n".format(name, i + 1))
        conllu_output.append("# text = {}\n".format(sent))
        tokens, labels, scores = predict(sent, logger)
        for j, (token, label) in enumerate(zip(tokens, labels)):
            conllu_output.append(
                "{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 5 + "\n"
            )
        conllu_output.append("\n")

    output_filename = "output.conllu"
    with open(output_filename, "w") as out_f:
        out_f.writelines(conllu_output)

    return {output_file: output_file.update(visible=True, value=output_filename)}


css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()

with gr.Blocks(css=css) as demo:
    gr.HTML(top_html)
    select_model = gr.Dropdown(choices=list(model_choices.keys()), label="Tagger model", value=default_model)
    select_model.change(myapp.load_model, inputs=[select_model])
    with gr.Tab("Single sentence"):
        text = gr.Textbox(placeholder="Enter your text here...", label="Input")
        examples = gr.Examples(
            examples=[
                [
                    "A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações."
                ],
                [
                    "Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."
                ],
            ],
            inputs=[text],
            label="Select an example",
        )
        output_highlighted = gr.HighlightedText(label="Colorful output", visible=False)
        output_df = gr.Dataframe(label="Tabular output", visible=False)
        submit_btn = gr.Button("Tag it")
        submit_btn.click(
            fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df]
        )
    with gr.Tab("Multiple sentences"):
        gr.HTML(
            """
        <p>Upload a plain text file with sentences in it. 
        Find below an example of what we expect the content of the file to look like. 
        Sentences are automatically split by spaCy's sentencizer. 
        To force an explicit segmentation, manually separate the sentences using a new line for each one.</p>
        """
        )
        gr.Markdown(
            """
        ```
        Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou:
        – Vá e não tornes a pecar!
        Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta.
        ```
        """
        )
        input_file = gr.File(label="Upload your input file here...")
        output_file = gr.File(visible=False)
        submit_btn_batch = gr.Button("Tag it")
        submit_btn_batch.click(
            fn=batch_analysis, inputs=input_file, outputs=output_file
        )

    gr.HTML(bottom_html)


demo.launch(debug=True)