File size: 1,671 Bytes
19d4726
 
 
debadfd
19d4726
c541339
 
 
19d4726
 
c541339
 
 
 
 
 
 
 
 
 
 
 
 
19d4726
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
    <div>
        <h1 style="font-weight: 900; font-size: 3rem; margin: 20px;">
            Porttagger
        </h1>
        <p class="slogan">A Brazilian Portuguese part of speech tagger according to the <a
                href="https://universaldependencies.org/">Universal Dependencies</a> model
        </p>
    </div>
    <p style="margin-top: 30px; margin-bottom: 10px; font-size: 94%; text-align: left;">
        Porttagger is a state of the art part of speech tagger for Brazilian Portuguese that automatically assigns
        morphosyntactic classes to the words of sentences, following the Universal Dependencies international model. You
        may provide single sentences or multiple sentences (using plain text files with several sentences) to be tagged.
        You may also choose which trained model to use. The options include a model trained on news texts (using the
        <a href="https://sites.google.com/icmc.usp.br/poetisa/resources-and-tools">Porttinari-base</a> corpus), on stock
        market tweets (from the <a
            href="https://www.kaggle.com/datasets/fernandojvdasilva/stock-tweets-ptbr-emotions">DANTE</a> corpus), on
        academic texts from the oil & gas
        domain (from the <a
            href="https://github.com/UniversalDependencies/UD_Portuguese-PetroGold/blob/master/README.md">PetroGold</a>
        corpus), and on all of them together. To the interested reader, this initiative is
        part of the <a href="https://sites.google.com/icmc.usp.br/poetisa/">POeTiSA</a> project, where much more
        information is available.
    </p>
</div>