Spaces:
Running
Running
import logging | |
import os | |
from typing import List, Tuple | |
import gradio as gr | |
import pandas as pd | |
import spacy | |
import torch | |
from transformers import AutoModelForTokenClassification, AutoTokenizer | |
try: | |
nlp = spacy.load("pt_core_news_sm") | |
except Exception: | |
os.system("python -m spacy download pt_core_news_sm") | |
nlp = spacy.load("pt_core_news_sm") | |
model = AutoModelForTokenClassification.from_pretrained("Emanuel/porttagger-news-base") | |
tokenizer = AutoTokenizer.from_pretrained("Emanuel/porttagger-news-base") | |
logger = logging.getLogger() | |
logger.setLevel(logging.DEBUG) | |
def predict(text, nlp, logger=None) -> Tuple[List[str], List[str]]: | |
doc = nlp(text) | |
tokens = [token.text for token in doc] | |
logger.info("Starting predictions for sentence: {}".format(text)) | |
input_tokens = tokenizer( | |
tokens, | |
return_tensors="pt", | |
is_split_into_words=True, | |
return_offsets_mapping=True, | |
return_special_tokens_mask=True, | |
) | |
output = model(input_tokens["input_ids"]) | |
i_token = 0 | |
labels = [] | |
scores = [] | |
for off, is_special_token, pred in zip( | |
input_tokens["offset_mapping"][0], | |
input_tokens["special_tokens_mask"][0], | |
output.logits[0], | |
): | |
if is_special_token or off[0] > 0: | |
continue | |
label = model.config.__dict__["id2label"][int(pred.argmax(axis=-1))] | |
if logger is not None: | |
logger.info("{}, {}, {}".format(off, tokens[i_token], label)) | |
labels.append(label) | |
scores.append( | |
"{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max())) | |
) | |
i_token += 1 | |
return tokens, labels, scores | |
def text_analysis(text): | |
tokens, labels, scores = predict(text, nlp, logger) | |
pos_count = pd.DataFrame( | |
{ | |
"token": tokens, | |
"etiqueta": labels, | |
"confiança": scores, | |
} | |
) | |
pos_tokens = [] | |
for token, label in zip(tokens, labels): | |
pos_tokens.extend([(token, label), (" ", None)]) | |
output_highlighted.update(visible=True) | |
output_df.update(visible=True) | |
return { | |
output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)), | |
output_df: output_df.update(visible=True, value=pos_count), | |
} | |
css = open("style.css").read() | |
top_html = open("top.html").read() | |
bottom_html = open("bottom.html").read() | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(top_html) | |
text = gr.Textbox(placeholder="Enter your text here...", label="Input") | |
examples = gr.Examples( | |
examples=[ | |
[ | |
"A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações." | |
], | |
["Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."], | |
], | |
inputs=[text], | |
label="Select an example", | |
) | |
output_highlighted = gr.HighlightedText(label="Colorful output", visible=False) | |
output_df = gr.Dataframe(label="Tabular output", visible=False) | |
submit_btn = gr.Button("Send") | |
submit_btn.click( | |
fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df] | |
) | |
gr.HTML(bottom_html) | |
demo.launch(debug=True) | |