import logging import os from pathlib import Path from typing import List, Tuple import gradio as gr import pandas as pd import spacy import torch from dante_tokenizer import DanteTokenizer from transformers import AutoModelForTokenClassification, AutoTokenizer from preprocessing import expand_contractions try: nlp = spacy.load("pt_core_news_sm") except Exception: os.system("python -m spacy download pt_core_news_sm") nlp = spacy.load("pt_core_news_sm") dt_tokenizer = DanteTokenizer() default_model = "News" model_choices = { "News": "Emanuel/porttagger-news-base", "Tweets (stock market)": "Emanuel/porttagger-tweets-base", "Oil and Gas (academic texts)": "Emanuel/porttagger-oilgas-base", "Multigenre": "Emanuel/porttagger-base", } pre_tokenizers = { "News": nlp, "Tweets (stock market)": dt_tokenizer.tokenize, "Oil and Gas (academic texts)": nlp, "Multigenre": nlp, } logger = logging.getLogger() logger.setLevel(logging.DEBUG) class MyApp: def __init__(self) -> None: self.model = None self.tokenizer = None self.pre_tokenizer = None self.load_model() def load_model(self, model_name: str = default_model): if model_name not in model_choices.keys(): logger.error("Selected model is not supported, resetting to the default model.") model_name = default_model self.model = AutoModelForTokenClassification.from_pretrained(model_choices[model_name]) self.tokenizer = AutoTokenizer.from_pretrained(model_choices[model_name]) self.pre_tokenizer = pre_tokenizers[model_name] myapp = MyApp() def predict(text, logger=None) -> Tuple[List[str], List[str]]: doc = myapp.pre_tokenizer(text) tokens = [token.text if not isinstance(token, str) else token for token in doc] logger.info("Starting predictions for sentence: {}".format(text)) print("Using model {}".format(myapp.model.config.__dict__["_name_or_path"])) input_tokens = myapp.tokenizer( tokens, return_tensors="pt", is_split_into_words=True, return_offsets_mapping=True, return_special_tokens_mask=True, ) output = myapp.model(input_tokens["input_ids"]) i_token = 0 labels = [] scores = [] for off, is_special_token, pred in zip( input_tokens["offset_mapping"][0], input_tokens["special_tokens_mask"][0], output.logits[0], ): if is_special_token or off[0] > 0: continue label = myapp.model.config.__dict__["id2label"][int(pred.argmax(axis=-1))] if logger is not None: logger.info("{}, {}, {}".format(off, tokens[i_token], label)) labels.append(label) scores.append( "{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max())) ) i_token += 1 return tokens, labels, scores def text_analysis(text): text = expand_contractions(text) tokens, labels, scores = predict(text, logger) if len(labels) != len(tokens): m = len(tokens) - len(labels) labels += [None] * m scores += [0] * m pos_count = pd.DataFrame( { "token": tokens, "tag": labels, "confidence": scores, } ) pos_tokens = [] for token, label in zip(tokens, labels): pos_tokens.extend([(token, label), (" ", None)]) output_highlighted.update(visible=True) output_df.update(visible=True) return { output_highlighted: output_highlighted.update(visible=True, value=(pos_tokens)), output_df: output_df.update(visible=True, value=pos_count), } def batch_analysis(input_file): text = open(input_file.name, encoding="utf-8").read() text = text.split("\n") name = Path(input_file.name).stem sents = [] for sent in text: sub_sents = nlp(sent).sents sub_sents = [str(_sent).strip() for _sent in sub_sents] sents += sub_sents conllu_output = [] for i, sent in enumerate(sents): sent = expand_contractions(sent) conllu_output.append("# sent_id = {}-{}\n".format(name, i + 1)) conllu_output.append("# text = {}\n".format(sent)) tokens, labels, scores = predict(sent, logger) for j, (token, label) in enumerate(zip(tokens, labels)): conllu_output.append( "{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 5 + "\n" ) conllu_output.append("\n") output_filename = "output.conllu" with open(output_filename, "w") as out_f: out_f.writelines(conllu_output) return {output_file: output_file.update(visible=True, value=output_filename)} css = open("style.css").read() top_html = open("top.html").read() bottom_html = open("bottom.html").read() with gr.Blocks(css=css) as demo: gr.HTML(top_html) select_model = gr.Dropdown(choices=list(model_choices.keys()), label="Tagger model", value=default_model) select_model.change(myapp.load_model, inputs=[select_model]) with gr.Tab("Single sentence"): text = gr.Textbox(placeholder="Enter your text here...", label="Input") examples = gr.Examples( examples=[ [ "A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações." ], [ "Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista." ], ], inputs=[text], label="Select an example", ) output_highlighted = gr.HighlightedText(label="Colorful output", visible=False) output_df = gr.Dataframe(label="Tabular output", visible=False) submit_btn = gr.Button("Tag it") submit_btn.click( fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df] ) with gr.Tab("Multiple sentences"): gr.HTML( """
Upload a plain text file with sentences in it. Find below an example of what we expect the content of the file to look like. Sentences are automatically split by spaCy's sentencizer. To force an explicit segmentation, manually separate the sentences using a new line for each one.
""" ) gr.Markdown( """ ``` Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou: – Vá e não tornes a pecar! Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta. ``` """ ) input_file = gr.File(label="Upload your input file here...") output_file = gr.File(label="Tagged file", visible=False) submit_btn_batch = gr.Button("Tag it") submit_btn_batch.click( fn=batch_analysis, inputs=input_file, outputs=output_file ) gr.HTML(bottom_html) demo.launch(debug=True)