Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,63 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
st
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
def run_terminal_command(command):
|
4 |
+
try:
|
5 |
+
# Run the terminal command and capture its output
|
6 |
+
output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
|
7 |
+
return output.decode("utf-8") # Decode bytes to string
|
8 |
+
except subprocess.CalledProcessError as e:
|
9 |
+
# Handle errors if the command fails
|
10 |
+
return f"Error: {e.output.decode('utf-8')}"
|
11 |
+
|
12 |
+
# Example command: list files in the current directory
|
13 |
+
command = "ls"
|
14 |
+
output = run_terminal_command(command)
|
15 |
+
print(output)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
# import streamlit as st
|
26 |
+
# import torch
|
27 |
+
# from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
28 |
+
# from huggingface_hub import hf_hub_download
|
29 |
+
# from safetensors.torch import load_file
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# # Model Path/Repo Information
|
34 |
+
# base = "stabilityai/stable-diffusion-xl-base-1.0"
|
35 |
+
# repo = "ByteDance/SDXL-Lightning"
|
36 |
+
# ckpt = "sdxl_lightning_4step_unet.safetensors"
|
37 |
+
|
38 |
+
# # Load model (Executed only once for efficiency)
|
39 |
+
# @st.cache_resource
|
40 |
+
# def load_sdxl_pipeline():
|
41 |
+
# unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float32)
|
42 |
+
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
43 |
+
# pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32, variant="fp16").to("cpu")
|
44 |
+
# pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
+
# return pipe
|
46 |
+
|
47 |
+
|
48 |
+
# # Streamlit UI
|
49 |
+
# st.title("Image Generation")
|
50 |
+
# prompt = st.text_input("Enter your image prompt:")
|
51 |
+
|
52 |
+
# if st.button("Generate Image"):
|
53 |
+
# if not prompt:
|
54 |
+
# st.warning("Please enter a prompt.")
|
55 |
+
# else:
|
56 |
+
# pipe = load_sdxl_pipeline() # Load the pipeline from cache
|
57 |
+
# with torch.no_grad():
|
58 |
+
# image = pipe(prompt).images[0]
|
59 |
+
|
60 |
+
# st.image(image)
|
61 |
|
62 |
|
63 |
|