File size: 1,836 Bytes
e460bb5
c1548d4
e460bb5
c1548d4
83e0b34
71ad11e
e460bb5
 
71ad11e
e460bb5
a91e5a1
71ad11e
83e0b34
 
3ccb353
5f28fdf
c1548d4
7747bcb
24f170e
 
 
 
 
 
 
 
 
 
0d2d23e
 
 
 
24f170e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1548d4
4238098
c1548d4
 
 
 
 
 
4238098
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import google.generativeai as palm
import gradio as gr
import os 
import json
from transformers import pipeline

# Set your API key
palm.configure(api_key=os.environ['PALM_KEY'])

# Select the PaLM 2 model
# model = 'models/text-bison-001'

# candlab= ["recharge coins or get subscription", "show list of my friends"]



def responsenew(data):
    print(data)
    response = palm.chat(messages=f"""From the text given as data below by the user, find out what intention or category does the data fall under out of given 5 intents i.e:\n
    1. purchasing coins\n
    2. viewing friends list\n
    3. viewing groups been joined by the user\n
    4. viewing pages been joined by the user\n
    5. user is saying to view the reminders been shared to the user or by the user\n
    
    data = {data["text"]}""")

    respo = {
            "message": response.last,
            "action": "nothing",
            "function": "nothing"
        }
    # user_intent = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
    # if "payment" in response.last:
    #     respo = {
    #         "message": "Click the button below to view Premium Services and Coin Recharge options: ",
    #         "action": "payment",
    #         "function": "nothing"
    #     }
    # elif "friends" in response.last:
    #     respo = {
    #         "message": "Slide left or right profiles or tap on 'My Friends' to view list of your friends: ",
    #         "action": "show_friends",
    #         "function": "nothing"
    #     }
    # else:
    #     respo = {
    #         "message": response.last,
    #         "action": "nothing",
    #         "function": "nothing"
    #     }
    return json.dumps(respo)

gradio_interface = gr.Interface(
  fn = responsenew,
  inputs = "text",
  outputs = "text" 
)
gradio_interface.launch()