Spaces:
Sleeping
Sleeping
# Object Detection | |
import streamlit as st | |
from huggingface_hub import hf_hub_download | |
from transformers import AutoImageProcessor, TableTransformerForObjectDetection | |
import torch | |
from PIL import Image | |
import fitz # Import PyMuPDF (fitz) | |
# Model and Image Processor Loading (ideally at the app start) | |
def load_assets(): | |
file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") | |
image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") | |
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") | |
return file_path, image_processor, model | |
file_path, image_processor, model = load_assets() | |
# App Title | |
st.title("Table Detection in Documents") | |
# Document Upload | |
uploaded_file = st.file_uploader("Upload a document", type=["pdf", "docx", "doc"]) # Add more formats if needed | |
# Process Document and Display Results | |
if uploaded_file: | |
doc = fitz.open(stream=uploaded_file.getvalue(), filetype="pdf") # Open as PDF | |
for page_index in range(len(doc)): | |
page = doc.load_page(page_index) | |
pix = page.get_pixmap() | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
# Table Detection (your existing logic) | |
inputs = image_processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] | |
st.image(image) # Display the uploaded image | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
st.write( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) |