Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,27 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#Importing Libraries
|
10 |
-
import cv2
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
%matplotlib inline
|
13 |
-
from IPython.display import Image
|
14 |
-
|
15 |
-
import keras_cv
|
16 |
-
import keras_core as keras
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
from collections import defaultdict
|
21 |
-
import json
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
with open(anns_file, 'r') as f:
|
26 |
-
coco = json.load(f)
|
27 |
-
|
28 |
-
self.annIm_dict = defaultdict(list)
|
29 |
-
self.cat_dict = {}
|
30 |
-
self.annId_dict = {}
|
31 |
-
self.im_dict = {}
|
32 |
-
self.licenses_dict = {}
|
33 |
-
|
34 |
-
for ann in coco['annotations']:
|
35 |
-
self.annIm_dict[ann['image_id']].append(ann)
|
36 |
-
self.annId_dict[ann['id']]=ann
|
37 |
-
for img in coco['images']:
|
38 |
-
self.im_dict[img['id']] = img
|
39 |
-
for cat in coco['categories']:
|
40 |
-
self.cat_dict[cat['id']] = cat
|
41 |
-
for license in coco['licenses']:
|
42 |
-
self.licenses_dict[license['id']] = license
|
43 |
-
|
44 |
-
def get_imgIds(self):
|
45 |
-
return list(self.im_dict.keys())
|
46 |
-
def get_annIds(self, im_ids):
|
47 |
-
im_ids=im_ids if isinstance(im_ids, list) else [im_ids]
|
48 |
-
return [ann['id'] for im_id in im_ids for ann in self.annIm_dict[im_id]]
|
49 |
-
def load_anns(self, ann_ids):
|
50 |
-
im_ids=ann_ids if isinstance(ann_ids, list) else [ann_ids]
|
51 |
-
return [self.annId_dict[ann_id] for ann_id in ann_ids]
|
52 |
-
def load_cats(self, class_ids):
|
53 |
-
class_ids=class_ids if isinstance(class_ids, list) else [class_ids]
|
54 |
-
return [self.cat_dict[class_id] for class_id in class_ids]
|
55 |
-
def get_imgLicenses(self,im_ids):
|
56 |
-
im_ids=im_ids if isinstance(im_ids, list) else [im_ids]
|
57 |
-
lic_ids = [self.im_dict[im_id]["license"] for im_id in im_ids]
|
58 |
-
return [self.licenses_dict[lic_id] for lic_id in lic_ids]
|
59 |
-
coco_images_dir = "/kaggle/input/coco-2017-dataset/coco2017/train2017"
|
60 |
-
annot_file = "/kaggle/input/coco-2017-dataset/coco2017/annotations/instances_train2017.json"
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
import numpy as np
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
num_imgs_to_disp = 4
|
69 |
-
total_images = len(coco.get_imgIds()) # total number of images
|
70 |
-
sel_im_idxs = np.random.permutation(total_images)[:num_imgs_to_disp]
|
71 |
-
img_ids = coco.get_imgIds()
|
72 |
-
selected_img_ids = [img_ids[i] for i in sel_im_idxs]
|
73 |
-
ann_ids = coco.get_annIds(selected_img_ids)
|
74 |
-
im_licenses = coco.get_imgLicenses(selected_img_ids)
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
bbox = ann['bbox']
|
87 |
-
x, y, w, h = [int(b) for b in bbox]
|
88 |
-
class_id = ann["category_id"]
|
89 |
-
class_name = coco.load_cats(class_id)[0]["name"]
|
90 |
-
license = coco.get_imgLicenses(im)[0]["name"]
|
91 |
-
color_ = color_list[class_id]
|
92 |
-
rect = plt.Rectangle((x, y), w, h, linewidth=2, edgecolor=color_, facecolor='none')
|
93 |
-
t_box=ax[i].text(x, y, class_name, color='red', fontsize=10)
|
94 |
-
t_box.set_bbox(dict(boxstyle='square, pad=0',facecolor='white', alpha=0.6, edgecolor='blue'))
|
95 |
-
ax[i].add_patch(rect)
|
96 |
-
|
97 |
-
ax[i].axis('off')
|
98 |
-
ax[i].imshow(image)
|
99 |
-
ax[i].set_xlabel('Longitude')
|
100 |
-
ax[i].set_title(f"License: {license}")
|
101 |
-
plt.tight_layout()
|
102 |
-
plt.show()
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
from transformers import AutoImageProcessor, TableTransformerForObjectDetection
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
|
7 |
+
image = Image.open(file_path).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
|
10 |
+
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
|
|
|
11 |
|
12 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
13 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
16 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
17 |
+
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
|
18 |
+
0
|
19 |
+
]
|
20 |
|
21 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
22 |
+
box = [round(i, 2) for i in box.tolist()]
|
23 |
+
print(
|
24 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
25 |
+
f"{round(score.item(), 3)} at location {box}"
|
26 |
+
)
|
27 |
+
Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|