Spaces:
Running
Running
File size: 2,440 Bytes
2694503 b65b755 2694503 80c53a2 f70d981 2694503 c532af7 5d8c89a ce2abbe 2ac511b 43c14e0 b65b755 2ac511b b65b755 2ac511b b65b755 2ac511b b65b755 2ac511b b65b755 2ac511b b65b755 ce2abbe 2694503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import gradio as gr
from groq import Groq
from dotenv import load_dotenv
load_dotenv()
api1 = os.getenv("GROQ_API_KEY")
apis = [
api1,
# api1,
]
def make_call(data):
print(data)
answer = None
while True:
for api in apis:
client = Groq(
api_key=api,
) # Configure the model with the API key
# query = st.text_input("Enter your query")
prmptquery= f"Act as bhagwan Krishna and answer this query in context to bhagwat geeta, you may also provide reference to shloks from chapters of bhagwat geeta which is relevant to the query. Query= {data}"
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prmptquery,
}
],
model="mixtral-8x7b-32768",
)
answer = response.choices[0].message.content
except Exception as e:
print(f"API call failed for: {e}")
if answer:
break
if answer:
break
return answer
gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text")
gradio_interface.launch()
# print(chat_completion)
# # Text to 3D
# import streamlit as st
# import torch
# from diffusers import ShapEPipeline
# from diffusers.utils import export_to_gif
# # Model loading (Ideally done once at the start for efficiency)
# ckpt_id = "openai/shap-e"
# @st.cache_resource # Caches the model for faster subsequent runs
# def load_model():
# return ShapEPipeline.from_pretrained(ckpt_id).to("cuda")
# pipe = load_model()
# # App Title
# st.title("Shark 3D Image Generator")
# # User Inputs
# prompt = st.text_input("Enter your prompt:", "a shark")
# guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5)
# # Generate and Display Images
# if st.button("Generate"):
# with st.spinner("Generating images..."):
# images = pipe(
# prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=64,
# size=256,
# ).images
# gif_path = export_to_gif(images, "shark_3d.gif")
# st.image(images[0]) # Display the first image
# st.success("GIF saved as shark_3d.gif") |