File size: 2,440 Bytes
2694503
b65b755
2694503
80c53a2
f70d981
2694503
c532af7
5d8c89a
 
 
 
ce2abbe
 
 
2ac511b
43c14e0
 
b65b755
 
 
 
 
2ac511b
 
b65b755
 
 
 
 
 
 
 
 
 
2ac511b
b65b755
 
2ac511b
b65b755
2ac511b
b65b755
2ac511b
b65b755
 
 
 
 
ce2abbe
 
2694503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import gradio as gr
from groq import Groq
from dotenv import load_dotenv
load_dotenv()

api1 = os.getenv("GROQ_API_KEY")

apis = [
    api1,
    # api1,
]


def make_call(data):
    print(data)
    answer = None
    while True:
        for api in apis:
            client = Groq(
                    api_key=api,
                )  # Configure the model with the API key
            # query = st.text_input("Enter your query")
            prmptquery= f"Act as bhagwan Krishna and answer this query in context to bhagwat geeta, you may also provide reference to shloks from chapters of bhagwat geeta which is relevant to the query. Query= {data}"
            try:
                response = client.chat.completions.create(
                messages=[
                    {
                        "role": "user",
                        "content": prmptquery,
                    }
                ],
                model="mixtral-8x7b-32768",
                )
                answer = response.choices[0].message.content
            except Exception as e:
                print(f"API call failed for: {e}")
            if answer:
                break
        if answer:
                break
    return answer



gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text")
gradio_interface.launch()

# print(chat_completion)

























# # Text to 3D

# import streamlit as st
# import torch
# from diffusers import ShapEPipeline
# from diffusers.utils import export_to_gif

# # Model loading (Ideally done once at the start for efficiency)
# ckpt_id = "openai/shap-e"  
# @st.cache_resource  # Caches the model for faster subsequent runs
# def load_model():
#     return ShapEPipeline.from_pretrained(ckpt_id).to("cuda")  

# pipe = load_model()

# # App Title
# st.title("Shark 3D Image Generator")

# # User Inputs
# prompt = st.text_input("Enter your prompt:", "a shark")
# guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5)

# # Generate and Display Images
# if st.button("Generate"):
#     with st.spinner("Generating images..."):
#         images = pipe(
#             prompt,
#             guidance_scale=guidance_scale,
#             num_inference_steps=64,
#             size=256,
#         ).images
#         gif_path = export_to_gif(images, "shark_3d.gif")

#         st.image(images[0])  # Display the first image
#         st.success("GIF saved as shark_3d.gif")