File size: 7,031 Bytes
f4e447d
 
 
 
 
 
 
 
 
 
5d3c81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
971f411
 
 
 
5d3c81a
971f411
 
 
5d3c81a
971f411
 
 
5d3c81a
971f411
 
 
5d3c81a
7e4f369
 
 
 
 
 
 
 
5d3c81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e447d
c3d5622
 
 
 
 
 
 
 
5d3c81a
c3d5622
 
 
 
 
5d3c81a
 
c3d5622
5d3c81a
 
 
 
c3d5622
9d54a8c
5d3c81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
971f411
711df83
 
 
 
 
 
3280ea5
 
 
 
 
 
 
5d3c81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
import os
import fitz
from PIL import Image
import streamlit as st

# # Global variables
# COUNT, N = 0, 0
# chat_history = []
# chain = None  # Initialize chain as None

# # Function to set the OpenAI API key
# def set_apikey(api_key):
#     os.environ['OPENAI_API_KEY'] = api_key
#     return disable_box  # Update the disable_box

# # Function to enable the API key input box
# def enable_api_box():
#     return enable_box  # Update the enable_box

# # Function to add text to the chat history
# def add_text(history, text):
#     if not text:
#         raise gr.Error('Enter text')
#     history = history + [(text, '')]
#     return history

# # Function to process the PDF file and create a conversation chain
# def process_file(file):
#     global chain  # Access the global 'chain' variable
#     if 'OPENAI_API_KEY' not in os.environ:
#         raise gr.Error('Upload your OpenAI API key')

#     loader = PyPDFLoader(file.name)
#     documents = loader.load()
#     embeddings = OpenAIEmbeddings()
#     pdfsearch = Chroma.from_documents(documents, embeddings)
#     chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
#                                     retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
#                                     return_source_documents=True)
#     return chain

# # Function to generate a response based on the chat history and query
def generate_response(history, query, btn):
    global COUNT, N, chat_history, chain 
    if not btn:
        raise gr.Error(message='Upload a PDF')

    if COUNT == 0:
        chain = process_file(btn)
        COUNT += 1

    result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
    chat_history += [(query, result["answer"])]
    N = list(result['source_documents'][0])[1][1]['page']

    for char in result['answer']:
        history[-1][-1] += char  # Update the last response
        yield history, ''  

# Function to render a specific page of a PDF file as an image
def render_file(file):
    global N
    doc = fitz.open(file.name)
    page = doc[N]
    pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) 
    image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
    return image

# # Gradio application setup
# # with gr.Blocks() as demo:
# #     with gr.Column():
# #         gr.Markdown(""" 
# #         <style> 
# #             .image-container { height: 680px; } 
# #         </style> 
# #         """)  
# #         with gr.Row():
# #             enable_box = gr.Textbox(placeholder='Enter OpenAI API key', 
# #                                     show_label=False, interactive=True) 
# #             disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) 
# #             change_api_key = gr.Button('Change Key') 
# #         with gr.Row():
# #             chatbot = gr.Chatbot(value=[], elem_id='chatbot')  
# #             show_img = gr.Image(label='Upload PDF')

# #     # Set up event handlers

# #     # Event handler for submitting the OpenAI API key
# #     enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box]) 

# #     # Event handler for changing the API key
# #     change_api_key.click(fn=enable_api_box, outputs=[enable_box])

    
# def render_first(pdf_file): 
#     # ... Logic to process the PDF 
#     # ... Generate the first image
#     return image  


# with gr.Blocks() as demo:
#     with gr.Column():
#         gr.Markdown(""" 
#         <style> 
#             .image-container { height: 680px; } 
#         </style> 
#         """)  
#         with gr.Row():
#             enable_box = gr.Textbox(placeholder='Enter OpenAI API key',  
#                                     show_label=False, interactive=True) 
#             disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) 
#             change_api_key = gr.Button('Change Key') 
#         with gr.Row():
#             chatbot = gr.Chatbot(value=[], elem_id='chatbot')  
#             show_img = gr.Image(label='Upload PDF') 
#             pdf_upload = gr.UploadButton("πŸ“ Upload a PDF", file_types=[".pdf"])  # Added

#         # Event handlers
#         enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box]) 
#         change_api_key.click(fn=enable_api_box, outputs=[enable_box]) 
#         pdf_upload.upload(fn=render_first, inputs=[pdf_upload], outputs=[show_img])  # Corrected

        
#         txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...") # Add Textbox
#         submit_btn = gr.Button('Submit')  # Added the Submit button
#         submit_btn.click(        
#             fn=add_text,        
#             inputs=[chatbot, txt],  # Assuming 'txt' is your textbox for query input
#             outputs=[chatbot],        
#             queue=False    
#         ).success(
#             fn=generate_response,
#             inputs=[chatbot, txt, pdf_upload],  # Changed from 'btn' 
#             outputs=[chatbot, txt]   
#         ).success(
#             fn=render_file,
#             inputs=[pdf_upload],  # Changed from 'btn'
#             outputs=[show_img]
#         )

# demo.launch(server_port=7861) 


def add_text(history, text):
    if not text:
        raise gr.Error('Enter text')
    history = history + [(text, '')]
    return history

def render_first(pdf_file): 
    # ... Logic to process the PDF (extract text, create summary, etc.)
    # ... Generate a simple image as a placeholder
    image = Image.new('RGB', (600, 400), color = 'white') # Example

    return image

st.title("PDF-Powered Chatbot")  # Add a title

# Gradio interface with Streamlit containers
with st.container():  
    gr.Markdown(""" 
    <style> 
        .image-container { height: 680px; } 
    </style> 
    """)  
    with gr.Row():
        enable_box = gr.Textbox(placeholder='Enter OpenAI API key',  
                                show_label=False, interactive=True) 
        disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) 
        change_api_key = gr.Button('Change Key') 
    with gr.Row():
        chatbot = gr.Chatbot(value=[], elem_id='chatbot')  
        show_img = gr.Image(label='Upload PDF') 
        pdf_upload = gr.UploadButton("πŸ“ Upload a PDF", file_types=[".pdf"])  

    # Event handlers (same as before)
    # ... your event handlers ...

# If you only want a Gradio interface, launch Gradio
if __name__ == "__main__":
    gr.Interface(
        [render_first, add_text, generate_response, render_file],
        [pdf_upload, chatbot, txt, pdf_upload, pdf_upload],
        [show_img, chatbot, txt, show_img],
        title="PDF-Powered Chatbot",
    ).launch()