File size: 3,665 Bytes
f4e447d
 
 
 
 
 
 
 
 
 
 
 
 
 
01d1928
f4e447d
 
 
 
01d1928
f4e447d
 
 
01d1928
f4e447d
 
 
 
 
 
 
 
 
 
01d1928
f4e447d
 
 
 
 
 
 
01d1928
 
 
f4e447d
 
 
 
01d1928
f4e447d
 
01d1928
f4e447d
 
 
01d1928
f4e447d
 
 
 
 
01d1928
 
f4e447d
 
 
 
 
 
01d1928
f4e447d
 
 
 
 
 
9073766
 
e141969
 
9073766
 
e141969
f4e447d
 
e141969
f4e447d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
import os
import fitz
from PIL import Image

# Global variables
COUNT, N = 0, 0
chat_history = []
chain = None  # Initialize chain as None

# Function to set the OpenAI API key
def set_apikey(api_key):
    os.environ['OPENAI_API_KEY'] = api_key
    return disable_box  # Update the disable_box

# Function to enable the API key input box
def enable_api_box():
    return enable_box  # Update the enable_box

# Function to add text to the chat history
def add_text(history, text):
    if not text:
        raise gr.Error('Enter text')
    history = history + [(text, '')]
    return history

# Function to process the PDF file and create a conversation chain
def process_file(file):
    global chain  # Access the global 'chain' variable
    if 'OPENAI_API_KEY' not in os.environ:
        raise gr.Error('Upload your OpenAI API key')

    loader = PyPDFLoader(file.name)
    documents = loader.load()
    embeddings = OpenAIEmbeddings()
    pdfsearch = Chroma.from_documents(documents, embeddings)
    chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
                                    retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
                                    return_source_documents=True)
    return chain

# Function to generate a response based on the chat history and query
def generate_response(history, query, btn):
    global COUNT, N, chat_history, chain 
    if not btn:
        raise gr.Error(message='Upload a PDF')

    if COUNT == 0:
        chain = process_file(btn)
        COUNT += 1

    result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
    chat_history += [(query, result["answer"])]
    N = list(result['source_documents'][0])[1][1]['page']

    for char in result['answer']:
        history[-1][-1] += char  # Update the last response
        yield history, ''  

# Function to render a specific page of a PDF file as an image
def render_file(file):
    global N
    doc = fitz.open(file.name)
    page = doc[N]
    pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) 
    image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
    return image

# Gradio application setup
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("""
        <style>
            .image-container { /* Customize this class name if needed */
                height: 680px;
            }
        </style>
        """)

        with gr.Row():
            show_img = gr.Image(label='Upload PDF')

    # Set up event handlers

    # Event handler for submitting the OpenAI API key
    api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key])

    # Event handler for changing the API key
    change_api_key.click(fn=enable_api_box, outputs=[api_key])

    # Event handler for uploading a PDF
    btn.upload(fn=render_first, inputs=[btn], outputs=[show_img])

    # Event handler for submitting text and generating response
    submit_btn.click(
        fn=add_text,
        inputs=[chatbot, txt],
        outputs=[chatbot],
        queue=False
    ).success(
        fn=generate_response,
        inputs=[chatbot, txt, btn],
        outputs=[chatbot, txt]
    ).success(
        fn=render_file,
        inputs=[btn],
        outputs=[show_img]
    )
demo.queue()
if __name__ == "__main__":
    demo.launch()