File size: 4,293 Bytes
f4e447d
 
 
 
 
 
 
 
 
 
 
 
 
 
01d1928
f4e447d
 
 
 
01d1928
f4e447d
 
 
01d1928
f4e447d
 
 
 
 
 
 
 
 
 
01d1928
f4e447d
 
 
 
 
 
 
01d1928
 
 
f4e447d
 
 
 
01d1928
f4e447d
 
01d1928
f4e447d
 
 
01d1928
f4e447d
 
 
 
 
01d1928
 
f4e447d
 
 
 
 
 
01d1928
f4e447d
 
 
 
 
 
21b869f
 
 
 
 
 
 
 
 
 
f4e447d
21b869f
e141969
f4e447d
 
 
 
d1502aa
f4e447d
 
c1eb614
f4e447d
165a6d7
 
 
 
 
f4e447d
165a6d7
 
 
 
 
 
 
 
f4e447d
f38ab4f
 
 
 
f83c24c
 
 
 
 
 
 
 
 
 
f4e447d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
import os
import fitz
from PIL import Image

# Global variables
COUNT, N = 0, 0
chat_history = []
chain = None  # Initialize chain as None

# Function to set the OpenAI API key
def set_apikey(api_key):
    os.environ['OPENAI_API_KEY'] = api_key
    return disable_box  # Update the disable_box

# Function to enable the API key input box
def enable_api_box():
    return enable_box  # Update the enable_box

# Function to add text to the chat history
def add_text(history, text):
    if not text:
        raise gr.Error('Enter text')
    history = history + [(text, '')]
    return history

# Function to process the PDF file and create a conversation chain
def process_file(file):
    global chain  # Access the global 'chain' variable
    if 'OPENAI_API_KEY' not in os.environ:
        raise gr.Error('Upload your OpenAI API key')

    loader = PyPDFLoader(file.name)
    documents = loader.load()
    embeddings = OpenAIEmbeddings()
    pdfsearch = Chroma.from_documents(documents, embeddings)
    chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
                                    retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
                                    return_source_documents=True)
    return chain

# Function to generate a response based on the chat history and query
def generate_response(history, query, btn):
    global COUNT, N, chat_history, chain 
    if not btn:
        raise gr.Error(message='Upload a PDF')

    if COUNT == 0:
        chain = process_file(btn)
        COUNT += 1

    result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
    chat_history += [(query, result["answer"])]
    N = list(result['source_documents'][0])[1][1]['page']

    for char in result['answer']:
        history[-1][-1] += char  # Update the last response
        yield history, ''  

# Function to render a specific page of a PDF file as an image
def render_file(file):
    global N
    doc = fitz.open(file.name)
    page = doc[N]
    pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) 
    image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
    return image

# Gradio application setup
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(""" 
        <style> 
            .image-container { height: 680px; } 
        </style> 
        """)  
        with gr.Row():
            enable_box = gr.Textbox(placeholder='Enter OpenAI API key', 
                                    show_label=False, interactive=True) 
            disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) 
            change_api_key = gr.Button('Change Key') 
        with gr.Row():
            chatbot = gr.Chatbot(value=[], elem_id='chatbot')  
            show_img = gr.Image(label='Upload PDF')

    # Set up event handlers

    # Event handler for submitting the OpenAI API key
    enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box]) 

    # Event handler for changing the API key
    change_api_key.click(fn=enable_api_box, outputs=[enable_box])

    
def render_first(pdf_file): 
    # ... Logic to process the PDF 
    # ... Generate the first image
    return image  

with gr.Blocks() as demo:
    # ... your UI setup ...

    pdf_upload = gr.UploadButton("πŸ“ Upload a PDF", file_types=[".pdf"])  

    # ... other event handlers ... 

    pdf_upload.upload(fn=render_first, inputs=[pdf_upload], outputs=[show_img]) 
    # Event handler for submitting text and generating response
    submit_btn.click(        
    fn=add_text,        
    inputs=[chatbot, txt],        
    outputs=[chatbot],        
    queue=False)    
# ).success(
#         fn=generate_response,
#         inputs=[chatbot, txt, btn],
#         outputs=[chatbot, txt]
#     ).success(
#         fn=render_file,
#         inputs=[btn],
#         outputs=[show_img]
#     )
demo.queue()
if __name__ == "__main__":
    demo.launch()