Spaces:
Runtime error
Runtime error
import gradio as gr | |
import streamlit as st | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader | |
import os | |
import fitz | |
from PIL import Image | |
# Global variables | |
COUNT, N = 0, 0 | |
chat_history = [] | |
chain = None # Initialize chain as None | |
# Function to set the OpenAI API key | |
def set_apikey(api_key): | |
os.environ['OPENAI_API_KEY'] = api_key | |
return disable_box | |
# Function to enable the API key input box | |
def enable_api_box(): | |
return enable_box | |
# Function to add text to the chat history | |
def add_text(history, text): | |
if not text: | |
raise gr.Error('Enter text') | |
history = history + [(text, '')] | |
return history | |
# Function to process the PDF file and create a conversation chain | |
def process_file(file): | |
global chain | |
if 'OPENAI_API_KEY' not in os.environ: | |
raise gr.Error('Upload your OpenAI API key') | |
# Replace with your actual PDF processing logic | |
loader = PyPDFLoader(file.name) | |
documents = loader.load() | |
embeddings = OpenAIEmbeddings() | |
pdfsearch = Chroma.from_documents(documents, embeddings) | |
chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3), | |
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}), | |
return_source_documents=True) | |
return chain | |
# Function to generate a response based on the chat history and query | |
def generate_response(history, query, pdf_upload): | |
global COUNT, N, chat_history, chain | |
if not pdf_upload: | |
raise gr.Error(message='Upload a PDF') | |
if COUNT == 0: | |
chain = process_file(pdf_upload) | |
COUNT += 1 | |
# Replace with your LangChain logic to generate a response | |
result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True) | |
chat_history += [(query, result["answer"])] | |
N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed | |
for char in result['answer']: | |
history[-1][-1] += char | |
return history, '' | |
# Function to render a specific page of a PDF file as an image | |
def render_file(file): | |
global N | |
doc = fitz.open(file.name) | |
page = doc[N] | |
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) | |
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) | |
return image | |
# Function to render initial content from the PDF | |
def render_first(pdf_file): | |
# Replace with logic to process the PDF and generate an initial image | |
image = Image.new('RGB', (600, 400), color = 'white') # Placeholder | |
return image | |
# Streamlit & Gradio Interface | |
st.title("PDF-Powered Chatbot") | |
with st.container(): | |
gr.Markdown(""" | |
<style> | |
.image-container { height: 680px; } | |
</style> | |
""") | |
with gr.Blocks() as demo: # Introduce a Blocks context | |
with gr.Row(): | |
enable_box = gr.Textbox(placeholder='Enter OpenAI API key', | |
show_label=False, interactive=True) | |
disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) | |
change_api_key = gr.Button('Change Key') | |
with gr.Row(): | |
chatbot = gr.Chatbot(value=[], elem_id='chatbot') | |
show_img = gr.Image(label='Upload PDF') | |
# Create multiple PDF upload buttons | |
pdf_upload1 = gr.UploadButton("π Upload PDF 1", file_types=[".pdf"]) | |
pdf_upload2 = gr.UploadButton("π Upload PDF 2", file_types=[".pdf"]) | |
pdf_upload3 = gr.UploadButton("π Upload PDF 3", file_types=[".pdf"]) | |
# Event handlers (adjust how you use the uploads in these functions) | |
enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box]) | |
change_api_key.click(fn=enable_api_box, outputs=[enable_box]) | |
# Assuming you want to process the first PDF initially | |
pdf_upload1.upload(fn=render_first, inputs=[pdf_upload1], outputs=[show_img]) | |
txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...") | |
submit_btn = gr.Button('Submit') | |
# Event handler for submit button | |
def on_submit(): | |
add_text(chatbot, txt) | |
generate_response(chatbot, txt, pdf_upload1) | |
render_file(pdf_upload1) | |
if __name__ == "__main__": | |
gr.Interface( | |
[render_first, add_text, generate_response, render_file], | |
[pdf_upload1, chatbot, txt, pdf_upload2, pdf_upload3], | |
[show_img, chatbot, txt], # Assuming you want to display initially | |
title="PDF-Powered Chatbot" | |
).launch() | |