Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,130 +1,239 @@
|
|
1 |
-
import gradio as gr
|
2 |
import streamlit as st
|
|
|
|
|
3 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.vectorstores import Chroma
|
6 |
-
from langchain
|
7 |
-
from langchain.
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
-
# Global variables
|
15 |
-
COUNT, N = 0, 0
|
16 |
-
chat_history = []
|
17 |
-
chain = None # Initialize chain as None
|
18 |
|
19 |
-
# Function to set the OpenAI API key
|
20 |
|
21 |
-
api_key = os.environ['OPENAI_API_KEY']
|
22 |
|
23 |
-
st.write(api_key)
|
24 |
|
25 |
|
26 |
-
# Function to enable the API key input box
|
27 |
-
def enable_api_box():
|
28 |
-
|
29 |
-
|
30 |
-
# Function to add text to the chat history
|
31 |
-
def add_text(history, text):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Function to process the PDF file and create a conversation chain
|
38 |
-
def process_file(file):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# Function to generate a response based on the chat history and query
|
55 |
-
def generate_response(history, query, pdf_upload):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Function to render a specific page of a PDF file as an image
|
74 |
-
def render_file(file):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Function to render initial content from the PDF
|
83 |
-
def render_first(pdf_file):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
# Streamlit & Gradio Interface
|
89 |
-
|
90 |
-
st.title("PDF-Powered Chatbot")
|
91 |
-
|
92 |
-
with st.container():
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
with gr.Blocks() as demo:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
if __name__ == "__main__":
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
|
130 |
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import langchain
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
5 |
from langchain.vectorstores import Chroma
|
6 |
+
from langchain import OpenAI, VectorDBQA
|
7 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
+
import PyPDF2
|
9 |
+
|
10 |
+
api_key = os.environ["OPENAI_API_KEY"]
|
11 |
+
|
12 |
+
#This function will go through pdf and extract and return list of page texts.
|
13 |
+
def read_and_textify(files):
|
14 |
+
text_list = []
|
15 |
+
sources_list = []
|
16 |
+
for file in files:
|
17 |
+
pdfReader = PyPDF2.PdfReader(file)
|
18 |
+
#print("Page Number:", len(pdfReader.pages))
|
19 |
+
for i in range(len(pdfReader.pages)):
|
20 |
+
pageObj = pdfReader.pages[i]
|
21 |
+
text = pageObj.extract_text()
|
22 |
+
pageObj.clear()
|
23 |
+
text_list.append(text)
|
24 |
+
sources_list.append(file.name + "_page_"+str(i))
|
25 |
+
return [text_list,sources_list]
|
26 |
+
|
27 |
+
st.set_page_config(layout="centered", page_title="Multidoc_QnA")
|
28 |
+
st.header("Multidoc_QnA")
|
29 |
+
st.write("---")
|
30 |
+
|
31 |
+
#file uploader
|
32 |
+
uploaded_files = st.file_uploader("Upload documents",accept_multiple_files=True, type=["txt","pdf"])
|
33 |
+
st.write("---")
|
34 |
+
|
35 |
+
if uploaded_files is None:
|
36 |
+
st.info(f"""Upload files to analyse""")
|
37 |
+
elif uploaded_files:
|
38 |
+
st.write(str(len(uploaded_files)) + " document(s) loaded..")
|
39 |
+
|
40 |
+
textify_output = read_and_textify(uploaded_files)
|
41 |
+
|
42 |
+
documents = textify_output[0]
|
43 |
+
sources = textify_output[1]
|
44 |
+
|
45 |
+
#extract embeddings
|
46 |
+
embeddings = OpenAIEmbeddings(openai_api_key = api_key)
|
47 |
+
#vstore with metadata. Here we will store page numbers.
|
48 |
+
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
|
49 |
+
#deciding model
|
50 |
+
model_name = "gpt-3.5-turbo"
|
51 |
+
# model_name = "gpt-4"
|
52 |
+
|
53 |
+
retriever = vStore.as_retriever()
|
54 |
+
retriever.search_kwargs = {'k':2}
|
55 |
+
|
56 |
+
#initiate model
|
57 |
+
llm = OpenAI(model_name=model_name, openai_api_key = api_key, streaming=True)
|
58 |
+
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
59 |
+
|
60 |
+
st.header("Ask your data")
|
61 |
+
user_q = st.text_area("Enter your questions here")
|
62 |
+
|
63 |
+
if st.button("Get Response"):
|
64 |
+
try:
|
65 |
+
with st.spinner("Model is working on it..."):
|
66 |
+
result = model({"question":user_q}, return_only_outputs=True)
|
67 |
+
st.subheader('Your response:')
|
68 |
+
st.write(result['answer'])
|
69 |
+
st.subheader('Source pages:')
|
70 |
+
st.write(result['sources'])
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"An error occurred: {e}")
|
73 |
+
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# import gradio as gr
|
111 |
+
# import streamlit as st
|
112 |
+
# from langchain.embeddings.openai import OpenAIEmbeddings
|
113 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
114 |
+
# from langchain.vectorstores import Chroma
|
115 |
+
# from langchain.chains import ConversationalRetrievalChain
|
116 |
+
# from langchain.chat_models import ChatOpenAI
|
117 |
+
# from langchain.document_loaders import PyPDFLoader
|
118 |
+
# import os
|
119 |
+
# import fitz
|
120 |
+
# from PIL import Image
|
121 |
|
122 |
|
123 |
+
# # Global variables
|
124 |
+
# COUNT, N = 0, 0
|
125 |
+
# chat_history = []
|
126 |
+
# chain = None # Initialize chain as None
|
127 |
|
128 |
+
# # Function to set the OpenAI API key
|
129 |
|
130 |
+
# api_key = os.environ['OPENAI_API_KEY']
|
131 |
|
132 |
+
# st.write(api_key)
|
133 |
|
134 |
|
135 |
+
# # Function to enable the API key input box
|
136 |
+
# def enable_api_box():
|
137 |
+
# return enable_box
|
138 |
+
|
139 |
+
# # Function to add text to the chat history
|
140 |
+
# def add_text(history, text):
|
141 |
+
# if not text:
|
142 |
+
# raise gr.Error('Enter text')
|
143 |
+
# history = history + [(text, '')]
|
144 |
+
# return history
|
145 |
+
|
146 |
+
# # Function to process the PDF file and create a conversation chain
|
147 |
+
# def process_file(file):
|
148 |
+
# global chain
|
149 |
+
# if 'OPENAI_API_KEY' not in os.environ:
|
150 |
+
# raise gr.Error('Upload your OpenAI API key')
|
151 |
+
|
152 |
+
# # Replace with your actual PDF processing logic
|
153 |
+
# loader = PyPDFLoader(file.name)
|
154 |
+
# documents = loader.load()
|
155 |
+
# embeddings = OpenAIEmbeddings()
|
156 |
+
# pdfsearch = Chroma.from_documents(documents, embeddings)
|
157 |
+
|
158 |
+
# chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
|
159 |
+
# retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
|
160 |
+
# return_source_documents=True)
|
161 |
+
# return chain
|
162 |
+
|
163 |
+
# # Function to generate a response based on the chat history and query
|
164 |
+
# def generate_response(history, query, pdf_upload):
|
165 |
+
# global COUNT, N, chat_history, chain
|
166 |
+
# if not pdf_upload:
|
167 |
+
# raise gr.Error(message='Upload a PDF')
|
168 |
+
|
169 |
+
# if COUNT == 0:
|
170 |
+
# chain = process_file(pdf_upload)
|
171 |
+
# COUNT += 1
|
172 |
+
|
173 |
+
# # Replace with your LangChain logic to generate a response
|
174 |
+
# result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
|
175 |
+
# chat_history += [(query, result["answer"])]
|
176 |
+
# N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed
|
177 |
+
|
178 |
+
# for char in result['answer']:
|
179 |
+
# history[-1][-1] += char
|
180 |
+
# return history, ''
|
181 |
+
|
182 |
+
# # Function to render a specific page of a PDF file as an image
|
183 |
+
# def render_file(file):
|
184 |
+
# global N
|
185 |
+
# doc = fitz.open(file.name)
|
186 |
+
# page = doc[N]
|
187 |
+
# pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
|
188 |
+
# image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
|
189 |
+
# return image
|
190 |
+
|
191 |
+
# # Function to render initial content from the PDF
|
192 |
+
# def render_first(pdf_file):
|
193 |
+
# # Replace with logic to process the PDF and generate an initial image
|
194 |
+
# image = Image.new('RGB', (600, 400), color = 'white') # Placeholder
|
195 |
+
# return image
|
196 |
+
|
197 |
+
# # Streamlit & Gradio Interface
|
198 |
+
|
199 |
+
# st.title("PDF-Powered Chatbot")
|
200 |
+
|
201 |
+
# with st.container():
|
202 |
+
# gr.Markdown("""
|
203 |
+
# <style>
|
204 |
+
# .image-container { height: 680px; }
|
205 |
+
# </style>
|
206 |
+
# """)
|
207 |
+
|
208 |
+
# with gr.Blocks() as demo:
|
209 |
+
# pdf_upload1 = gr.UploadButton("📁 Upload PDF 1", file_types=[".pdf"]) # Define pdf_upload1
|
210 |
+
|
211 |
+
# # ... (rest of your interface creation)
|
212 |
+
|
213 |
+
# txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...")
|
214 |
+
# submit_btn = gr.Button('Submit')
|
215 |
+
|
216 |
+
# @submit_btn.click()
|
217 |
+
# def on_submit():
|
218 |
+
# add_text(chatbot, txt)
|
219 |
+
# generate_response(chatbot, txt, pdf_upload1) # Use pdf_upload1 here
|
220 |
+
# render_file(pdf_upload1) # Use pdf_upload1 here
|
221 |
+
|
222 |
+
# if __name__ == "__main__":
|
223 |
+
# gr.Interface(
|
224 |
+
# fn=generate_response,
|
225 |
+
# inputs=[
|
226 |
+
# "file", # Define pdf_upload1
|
227 |
+
# "text", # Define chatbot output
|
228 |
+
# "text" # Define txt
|
229 |
+
# ],
|
230 |
+
# outputs=[
|
231 |
+
# "image", # Define show_img
|
232 |
+
# "text", # Define chatbot output
|
233 |
+
# "text" # Define txt
|
234 |
+
# ],
|
235 |
+
# title="PDF-Powered Chatbot"
|
236 |
+
# ).launch()
|
237 |
|
238 |
|
239 |
|