Nikhil0987 commited on
Commit
ccfb409
·
verified ·
1 Parent(s): 5ab933e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -118
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  from langchain.embeddings.openai import OpenAIEmbeddings
3
  from langchain.text_splitter import CharacterTextSplitter
4
  from langchain.vectorstores import Chroma
@@ -8,7 +9,6 @@ from langchain.document_loaders import PyPDFLoader
8
  import os
9
  import fitz
10
  from PIL import Image
11
- import streamlit as st
12
 
13
  # Global variables
14
  COUNT, N = 0, 0
@@ -18,11 +18,11 @@ chain = None # Initialize chain as None
18
  # Function to set the OpenAI API key
19
  def set_apikey(api_key):
20
  os.environ['OPENAI_API_KEY'] = api_key
21
- return disable_box # Update the disable_box
22
 
23
  # Function to enable the API key input box
24
  def enable_api_box():
25
- return enable_box # Update the enable_box
26
 
27
  # Function to add text to the chat history
28
  def add_text(history, text):
@@ -33,36 +33,39 @@ def add_text(history, text):
33
 
34
  # Function to process the PDF file and create a conversation chain
35
  def process_file(file):
36
- global chain # Access the global 'chain' variable
37
  if 'OPENAI_API_KEY' not in os.environ:
38
  raise gr.Error('Upload your OpenAI API key')
39
 
 
40
  loader = PyPDFLoader(file.name)
41
  documents = loader.load()
42
  embeddings = OpenAIEmbeddings()
43
  pdfsearch = Chroma.from_documents(documents, embeddings)
 
44
  chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
45
  retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
46
  return_source_documents=True)
47
  return chain
48
 
49
- # # Function to generate a response based on the chat history and query
50
- def generate_response(history, query, btn):
51
- global COUNT, N, chat_history, chain
52
- if not btn:
53
  raise gr.Error(message='Upload a PDF')
54
 
55
  if COUNT == 0:
56
- chain = process_file(btn)
57
  COUNT += 1
58
 
59
- result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
 
60
  chat_history += [(query, result["answer"])]
61
- N = list(result['source_documents'][0])[1][1]['page']
62
 
63
  for char in result['answer']:
64
- history[-1][-1] += char # Update the last response
65
- yield history, ''
66
 
67
  # Function to render a specific page of a PDF file as an image
68
  def render_file(file):
@@ -73,117 +76,48 @@ def render_file(file):
73
  image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
74
  return image
75
 
76
- # Gradio application setup
77
- # with gr.Blocks() as demo:
78
- # with gr.Column():
79
- # gr.Markdown("""
80
- # <style>
81
- # .image-container { height: 680px; }
82
- # </style>
83
- # """)
84
- # with gr.Row():
85
- # enable_box = gr.Textbox(placeholder='Enter OpenAI API key',
86
- # show_label=False, interactive=True)
87
- # disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False)
88
- # change_api_key = gr.Button('Change Key')
89
- # with gr.Row():
90
- # chatbot = gr.Chatbot(value=[], elem_id='chatbot')
91
- # show_img = gr.Image(label='Upload PDF')
92
-
93
- # # Set up event handlers
94
-
95
- # # Event handler for submitting the OpenAI API key
96
- # enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box])
97
-
98
- # # Event handler for changing the API key
99
- # change_api_key.click(fn=enable_api_box, outputs=[enable_box])
100
-
101
-
102
  def render_first(pdf_file):
103
- # ... Logic to process the PDF
104
- # ... Generate the first image
105
- return image
106
-
107
-
108
- with gr.Blocks() as demo:
109
- with gr.Column():
110
- gr.Markdown("""
111
- <style>
112
- .image-container { height: 680px; }
113
- </style>
114
- """)
115
- with gr.Row():
116
- enable_box = gr.Textbox(placeholder='Enter OpenAI API key',
117
- show_label=False, interactive=True)
118
- disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False)
119
- change_api_key = gr.Button('Change Key')
120
- with gr.Row():
121
- chatbot = gr.Chatbot(value=[], elem_id='chatbot')
122
- show_img = gr.Image(label='Upload PDF')
123
- pdf_upload = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"]) # Added
124
-
125
- # Event handlers
126
- enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box])
127
- change_api_key.click(fn=enable_api_box, outputs=[enable_box])
128
- pdf_upload.upload(fn=render_first, inputs=[pdf_upload], outputs=[show_img]) # Corrected
129
-
130
-
131
- txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...") # Add Textbox
132
- submit_btn = gr.Button('Submit') # Added the Submit button
133
- submit_btn.click(
134
- fn=add_text,
135
- inputs=[chatbot, txt], # Assuming 'txt' is your textbox for query input
136
- outputs=[chatbot],
137
- queue=False
138
- ).success(
139
- fn=generate_response,
140
- inputs=[chatbot, txt, pdf_upload], # Changed from 'btn'
141
- outputs=[chatbot, txt]
142
- ).success(
143
- fn=render_file,
144
- inputs=[pdf_upload], # Changed from 'btn'
145
- outputs=[show_img]
146
- )
147
-
148
- # demo.launch(server_port=7861)
149
-
150
-
151
- def add_text(history, text):
152
- if not text:
153
- raise gr.Error('Enter text')
154
- history = history + [(text, '')]
155
- return history
156
-
157
- def render_first(pdf_file):
158
- # ... Logic to process the PDF (extract text, create summary, etc.)
159
- # ... Generate a simple image as a placeholder
160
- image = Image.new('RGB', (600, 400), color = 'white') # Example
161
-
162
  return image
163
 
164
- st.title("PDF-Powered Chatbot") # Add a title
165
-
166
- # Gradio interface with Streamlit containers
167
- with st.container():
168
- gr.Markdown("""
169
- <style>
170
- .image-container { height: 680px; }
171
- </style>
172
- """)
173
- with gr.Row():
174
- enable_box = gr.Textbox(placeholder='Enter OpenAI API key',
175
- show_label=False, interactive=True)
176
- disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False)
177
- change_api_key = gr.Button('Change Key')
178
- with gr.Row():
179
- chatbot = gr.Chatbot(value=[], elem_id='chatbot')
180
- show_img = gr.Image(label='Upload PDF')
 
181
  pdf_upload = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
182
 
183
- # Event handlers (same as before)
184
- # ... your event handlers ...
 
 
 
 
 
 
 
 
 
 
 
 
 
185
 
186
- # If you only want a Gradio interface, launch Gradio
187
  if __name__ == "__main__":
188
  gr.Interface(
189
  [render_first, add_text, generate_response, render_file],
 
1
  import gradio as gr
2
+ import streamlit as st
3
  from langchain.embeddings.openai import OpenAIEmbeddings
4
  from langchain.text_splitter import CharacterTextSplitter
5
  from langchain.vectorstores import Chroma
 
9
  import os
10
  import fitz
11
  from PIL import Image
 
12
 
13
  # Global variables
14
  COUNT, N = 0, 0
 
18
  # Function to set the OpenAI API key
19
  def set_apikey(api_key):
20
  os.environ['OPENAI_API_KEY'] = api_key
21
+ return disable_box
22
 
23
  # Function to enable the API key input box
24
  def enable_api_box():
25
+ return enable_box
26
 
27
  # Function to add text to the chat history
28
  def add_text(history, text):
 
33
 
34
  # Function to process the PDF file and create a conversation chain
35
  def process_file(file):
36
+ global chain
37
  if 'OPENAI_API_KEY' not in os.environ:
38
  raise gr.Error('Upload your OpenAI API key')
39
 
40
+ # Replace with your actual PDF processing logic
41
  loader = PyPDFLoader(file.name)
42
  documents = loader.load()
43
  embeddings = OpenAIEmbeddings()
44
  pdfsearch = Chroma.from_documents(documents, embeddings)
45
+
46
  chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
47
  retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
48
  return_source_documents=True)
49
  return chain
50
 
51
+ # Function to generate a response based on the chat history and query
52
+ def generate_response(history, query, pdf_upload):
53
+ global COUNT, N, chat_history, chain
54
+ if not pdf_upload:
55
  raise gr.Error(message='Upload a PDF')
56
 
57
  if COUNT == 0:
58
+ chain = process_file(pdf_upload)
59
  COUNT += 1
60
 
61
+ # Replace with your LangChain logic to generate a response
62
+ result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
63
  chat_history += [(query, result["answer"])]
64
+ N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed
65
 
66
  for char in result['answer']:
67
+ history[-1][-1] += char
68
+ return history, ''
69
 
70
  # Function to render a specific page of a PDF file as an image
71
  def render_file(file):
 
76
  image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
77
  return image
78
 
79
+ # Function to render initial content from the PDF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  def render_first(pdf_file):
81
+ # Replace with logic to process the PDF and generate an initial image
82
+ image = Image.new('RGB', (600, 400), color = 'white') # Placeholder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  return image
84
 
85
+ # Streamlit & Gradio Interface
86
+ st.title("PDF-Powered Chatbot")
87
+
88
+ with st.container():
89
+ gr.Markdown("""
90
+ <style>
91
+ .image-container { height: 680px; }
92
+ </style>
93
+ """)
94
+ with gr.Row():
95
+ enable_box = gr.Textbox(placeholder='Enter OpenAI API key',
96
+ show_label=False, interactive=True)
97
+ disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False)
98
+ change_api_key = gr.Button('Change Key')
99
+
100
+ with gr.Row():
101
+ chatbot = gr.Chatbot(value=[], elem_id='chatbot')
102
+ show_img = gr.Image(label='Upload PDF')
103
  pdf_upload = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
104
 
105
+ # Event handlers
106
+ enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box])
107
+ change_api_key.click(fn=enable_api_box, outputs=[enable_box])
108
+ pdf_upload.upload(fn=render_first, inputs=[pdf_upload], outputs=[show_img])
109
+
110
+ txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...")
111
+ submit_btn = gr.Button('Submit')
112
+
113
+ submit_btn.click(
114
+ fn=add_text, inputs=[chatbot, txt], outputs=[chatbot], queue=False
115
+ ).success(
116
+ fn=generate_response, inputs=[chatbot, txt, pdf_upload], outputs=[chatbot, txt]
117
+ ).success(
118
+ fn=render_file, inputs=[pdf_upload], outputs=[show_img]
119
+ )
120
 
 
121
  if __name__ == "__main__":
122
  gr.Interface(
123
  [render_first, add_text, generate_response, render_file],