import gradio as gr import streamlit as st from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader import os import fitz from PIL import Image # Global variables COUNT, N = 0, 0 chat_history = [] chain = None # Initialize chain as None # Function to set the OpenAI API key def set_apikey(api_key): os.environ['OPENAI_API_KEY'] = api_key return disable_box # Function to enable the API key input box def enable_api_box(): return enable_box # Function to add text to the chat history def add_text(history, text): if not text: raise gr.Error('Enter text') history = history + [(text, '')] return history # Function to process the PDF file and create a conversation chain def process_file(file): global chain if 'OPENAI_API_KEY' not in os.environ: raise gr.Error('Upload your OpenAI API key') # Replace with your actual PDF processing logic loader = PyPDFLoader(file.name) documents = loader.load() embeddings = OpenAIEmbeddings() pdfsearch = Chroma.from_documents(documents, embeddings) chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3), retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}), return_source_documents=True) return chain # Function to generate a response based on the chat history and query def generate_response(history, query, pdf_upload): global COUNT, N, chat_history, chain if not pdf_upload: raise gr.Error(message='Upload a PDF') if COUNT == 0: chain = process_file(pdf_upload) COUNT += 1 # Replace with your LangChain logic to generate a response result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True) chat_history += [(query, result["answer"])] N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed for char in result['answer']: history[-1][-1] += char return history, '' # Function to render a specific page of a PDF file as an image def render_file(file): global N doc = fitz.open(file.name) page = doc[N] pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) return image # Function to render initial content from the PDF def render_first(pdf_file): # Replace with logic to process the PDF and generate an initial image image = Image.new('RGB', (600, 400), color = 'white') # Placeholder return image # Streamlit & Gradio Interface st.title("PDF-Powered Chatbot") with st.container(): gr.Markdown(""" """) with gr.Blocks() as demo: # Introduce a Blocks context with gr.Row(): enable_box = gr.Textbox(placeholder='Enter OpenAI API key', show_label=False, interactive=True) disable_box = gr.Textbox(value='OpenAI API key is Set', interactive=False) change_api_key = gr.Button('Change Key') with gr.Row(): chatbot = gr.Chatbot(value=[], elem_id='chatbot') show_img = gr.Image(label='Upload PDF') # Create multiple PDF upload buttons pdf_upload1 = gr.UploadButton("📁 Upload PDF 1", file_types=[".pdf"]) pdf_upload2 = gr.UploadButton("📁 Upload PDF 2", file_types=[".pdf"]) pdf_upload3 = gr.UploadButton("📁 Upload PDF 3", file_types=[".pdf"]) # Event handlers (adjust how you use the uploads in these functions) enable_box.submit(fn=set_apikey, inputs=[enable_box], outputs=[disable_box]) change_api_key.click(fn=enable_api_box, outputs=[enable_box]) # Assuming you want to process the first PDF initially pdf_upload1.upload(fn=render_first, inputs=[pdf_upload1], outputs=[show_img]) txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...") submit_btn = gr.Button('Submit') # Event handler for submit button @submit_btn.capture() def on_submit(): add_text(chatbot, txt) generate_response(chatbot, txt, pdf_upload1) render_file(pdf_upload1) if __name__ == "__main__": gr.Interface( [render_first, add_text, generate_response, render_file], [pdf_upload1, chatbot, txt, pdf_upload2, pdf_upload3], [show_img, chatbot, txt], # Assuming you want to display initially title="PDF-Powered Chatbot" ).launch()