Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,170 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
import base64
|
4 |
-
import time
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
-
from transformers import pipeline
|
7 |
-
import torch
|
8 |
-
import textwrap
|
9 |
-
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from langchain.embeddings import SentenceTransformerEmbeddings
|
12 |
-
from langchain.vectorstores import Chroma
|
13 |
-
from langchain.llms import HuggingFacePipeline
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from constants import CHROMA_SETTINGS
|
16 |
-
from streamlit_chat import message
|
17 |
-
# from pydantic_settings import BaseSettings
|
18 |
-
|
19 |
-
st.set_page_config(layout="wide")
|
20 |
-
|
21 |
-
device = torch.device('cpu')
|
22 |
-
|
23 |
-
checkpoint = "MBZUAI/LaMini-T5-738M"
|
24 |
-
print(f"Checkpoint path: {checkpoint}") # Add this line for debugging
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
26 |
-
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
27 |
-
checkpoint,
|
28 |
-
device_map=device,
|
29 |
-
torch_dtype=torch.float32
|
30 |
-
)
|
31 |
-
|
32 |
-
persist_directory = "db"
|
33 |
-
|
34 |
-
@st.cache_resource
|
35 |
-
def data_ingestion():
|
36 |
-
for root, dirs, files in os.walk("docs"):
|
37 |
-
for file in files:
|
38 |
-
if file.endswith(".pdf"):
|
39 |
-
print(file)
|
40 |
-
loader = PDFMinerLoader(os.path.join(root, file))
|
41 |
-
documents = loader.load()
|
42 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
43 |
-
texts = text_splitter.split_documents(documents)
|
44 |
-
#create embeddings here
|
45 |
-
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
46 |
-
#create vector store here
|
47 |
-
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
48 |
-
db.persist()
|
49 |
-
db=None
|
50 |
-
|
51 |
-
@st.cache_resource
|
52 |
-
def llm_pipeline():
|
53 |
-
pipe = pipeline(
|
54 |
-
'text2text-generation',
|
55 |
-
model = base_model,
|
56 |
-
tokenizer = tokenizer,
|
57 |
-
max_length = 256,
|
58 |
-
do_sample = True,
|
59 |
-
temperature = 0.3,
|
60 |
-
top_p= 0.95,
|
61 |
-
device=device
|
62 |
-
)
|
63 |
-
local_llm = HuggingFacePipeline(pipeline=pipe)
|
64 |
-
return local_llm
|
65 |
-
|
66 |
-
@st.cache_resource
|
67 |
-
def qa_llm():
|
68 |
-
llm = llm_pipeline()
|
69 |
-
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
70 |
-
db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
|
71 |
-
retriever = db.as_retriever()
|
72 |
-
qa = RetrievalQA.from_chain_type(
|
73 |
-
llm = llm,
|
74 |
-
chain_type = "stuff",
|
75 |
-
retriever = retriever,
|
76 |
-
return_source_documents=True
|
77 |
-
)
|
78 |
-
return qa
|
79 |
-
|
80 |
-
def process_answer(instruction):
|
81 |
-
response = ''
|
82 |
-
instruction = instruction
|
83 |
-
qa = qa_llm()
|
84 |
-
generated_text = qa(instruction)
|
85 |
-
answer = generated_text['result']
|
86 |
-
return answer
|
87 |
-
|
88 |
-
def get_file_size(file):
|
89 |
-
file.seek(0, os.SEEK_END)
|
90 |
-
file_size = file.tell()
|
91 |
-
file.seek(0)
|
92 |
-
return file_size
|
93 |
-
|
94 |
-
@st.cache_data
|
95 |
-
#function to display the PDF of a given file
|
96 |
-
def displayPDF(file):
|
97 |
-
# Opening file from file path
|
98 |
-
with open(file, "rb") as f:
|
99 |
-
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
100 |
-
|
101 |
-
# Embedding PDF in HTML
|
102 |
-
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
103 |
-
|
104 |
-
# Displaying File
|
105 |
-
st.markdown(pdf_display, unsafe_allow_html=True)
|
106 |
-
|
107 |
-
# Display conversation history using Streamlit messages
|
108 |
-
def display_conversation(history):
|
109 |
-
for i in range(len(history["generated"])):
|
110 |
-
message(history["past"][i], is_user=True, key=str(i) + "_user")
|
111 |
-
message(history["generated"][i],key=str(i))
|
112 |
-
|
113 |
-
def main():
|
114 |
-
st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF 🦜📄 </h1>", unsafe_allow_html=True)
|
115 |
-
st.markdown("<h3 style='text-align: center; color: grey;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with ❤️ </a></h3>", unsafe_allow_html=True)
|
116 |
-
|
117 |
-
st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF 👇</h2>", unsafe_allow_html=True)
|
118 |
-
|
119 |
-
uploaded_file = st.file_uploader("", type=["pdf"])
|
120 |
-
|
121 |
-
if uploaded_file is not None:
|
122 |
-
file_details = {
|
123 |
-
"Filename": uploaded_file.name,
|
124 |
-
"File size": get_file_size(uploaded_file)
|
125 |
-
}
|
126 |
-
filepath = "docs/"+uploaded_file.name
|
127 |
-
with open(filepath, "wb") as temp_file:
|
128 |
-
temp_file.write(uploaded_file.read())
|
129 |
-
|
130 |
-
col1, col2= st.columns([1,2])
|
131 |
-
with col1:
|
132 |
-
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
|
133 |
-
st.json(file_details)
|
134 |
-
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
|
135 |
-
pdf_view = displayPDF(filepath)
|
136 |
-
|
137 |
-
with col2:
|
138 |
-
with st.spinner('Embeddings are in process...'):
|
139 |
-
ingested_data = data_ingestion()
|
140 |
-
st.success('Embeddings are created successfully!')
|
141 |
-
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
|
142 |
-
|
143 |
-
|
144 |
-
user_input = st.text_input("", key="input")
|
145 |
-
|
146 |
-
# Initialize session state for generated responses and past messages
|
147 |
-
if "generated" not in st.session_state:
|
148 |
-
st.session_state["generated"] = ["I am ready to help you"]
|
149 |
-
if "past" not in st.session_state:
|
150 |
-
st.session_state["past"] = ["Hey there!"]
|
151 |
-
|
152 |
-
# Search the database for a response based on user input and update session state
|
153 |
-
if user_input:
|
154 |
-
answer = process_answer({'query': user_input})
|
155 |
-
st.session_state["past"].append(user_input)
|
156 |
-
response = answer
|
157 |
-
st.session_state["generated"].append(response)
|
158 |
-
|
159 |
-
# Display conversation history using Streamlit messages
|
160 |
-
if st.session_state["generated"]:
|
161 |
-
display_conversation(st.session_state)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
if __name__ == "__main__":
|
170 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|