Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
from langchain.document_loaders import DirectoryLoader
|
2 |
from langchain.text_splitter import CharacterTextSplitter
|
3 |
import os
|
4 |
-
import pinecone
|
5 |
from langchain.vectorstores import Pinecone
|
6 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
@@ -11,14 +11,23 @@ from dotenv import load_dotenv
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
14 |
-
|
15 |
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
16 |
PINECONE_ENV = os.getenv('PINECONE_ENV')
|
17 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
18 |
-
|
19 |
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def doc_preprocessing():
|
23 |
loader = DirectoryLoader(
|
24 |
'data/',
|
@@ -33,38 +42,30 @@ def doc_preprocessing():
|
|
33 |
docs_split = text_splitter.split_documents(docs)
|
34 |
return docs_split
|
35 |
|
36 |
-
@st.cache_resource
|
37 |
-
def embedding_db():
|
38 |
-
# we use the openAI embedding model
|
39 |
-
embeddings = OpenAIEmbeddings()
|
40 |
|
41 |
-
# Initialize Pinecone
|
42 |
-
pc = Pinecone(
|
43 |
-
api_key=PINECONE_API_KEY,
|
44 |
-
environment=PINECONE_ENV
|
45 |
-
)
|
46 |
|
47 |
-
docs_split = doc_preprocessing()
|
48 |
-
|
49 |
-
# Check if index exists, create if needed
|
50 |
-
if 'langchain-demo-indexes' not in pc.list_indexes().names():
|
51 |
-
pc.create_index(
|
52 |
-
name='langchain-demo-indexes',
|
53 |
-
dimension=1536, # Adjust dimension if needed
|
54 |
-
metric='euclidean',
|
55 |
-
spec=ServerlessSpec(cloud='aws', region='us-west-2')
|
56 |
-
)
|
57 |
-
|
58 |
-
doc_db = Pinecone.from_documents(
|
59 |
-
docs_split,
|
60 |
-
embeddings,
|
61 |
-
index_name='langchain-demo-indexes',
|
62 |
-
client=pc # Pass the Pinecone object
|
63 |
-
)
|
64 |
-
return doc_db
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def retrieval_answer(query):
|
70 |
qa = RetrievalQA.from_chain_type(
|
|
|
1 |
+
from langchain.document_loaders import DirectoryLoader
|
2 |
from langchain.text_splitter import CharacterTextSplitter
|
3 |
import os
|
4 |
+
import pinecone
|
5 |
from langchain.vectorstores import Pinecone
|
6 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
|
|
14 |
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
15 |
PINECONE_ENV = os.getenv('PINECONE_ENV')
|
16 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
|
17 |
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
|
18 |
|
19 |
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def embedding_db():
|
23 |
+
# we use the openAI embedding model
|
24 |
+
embeddings = OpenAIEmbeddings()
|
25 |
+
|
26 |
+
# Initialize Pinecone: Updated method
|
27 |
+
pc = pinecone.init(
|
28 |
+
api_key=PINECONE_API_KEY,
|
29 |
+
environment=PINECONE_ENV
|
30 |
+
|
31 |
def doc_preprocessing():
|
32 |
loader = DirectoryLoader(
|
33 |
'data/',
|
|
|
42 |
docs_split = text_splitter.split_documents(docs)
|
43 |
return docs_split
|
44 |
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# docs_split = doc_preprocessing()
|
49 |
+
|
50 |
+
# # Check if index exists, create if needed
|
51 |
+
# if 'langchain-demo-indexes' not in pc.list_indexes().names():
|
52 |
+
# pc.create_index(
|
53 |
+
# name='langchain-demo-indexes',
|
54 |
+
# dimension=1536, # Adjust dimension if needed
|
55 |
+
# metric='euclidean',
|
56 |
+
# spec=ServerlessSpec(cloud='aws', region='us-west-2')
|
57 |
+
# )
|
58 |
+
|
59 |
+
# doc_db = Pinecone.from_documents(
|
60 |
+
# docs_split,
|
61 |
+
# embeddings,
|
62 |
+
# index_name='langchain-demo-indexes',
|
63 |
+
# client=pc # Pass the Pinecone object
|
64 |
+
# )
|
65 |
+
# return doc_db
|
66 |
+
|
67 |
+
# llm = ChatOpenAI()
|
68 |
+
# doc_db = embedding_db()
|
69 |
|
70 |
def retrieval_answer(query):
|
71 |
qa = RetrievalQA.from_chain_type(
|