Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,103 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import nltk
|
5 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
-
|
8 |
-
# Setting up the page configuration for Streamlit App
|
9 |
-
st.set_page_config(
|
10 |
-
page_title="Generate reviews",
|
11 |
-
# layout="wide",
|
12 |
-
initial_sidebar_state="expanded"
|
13 |
-
)
|
14 |
-
|
15 |
-
|
16 |
-
# Загрузка модели и токенизатора
|
17 |
-
#@st.cache_data()
|
18 |
-
def get_model():
|
19 |
-
# Загрузка модели
|
20 |
-
model = AutoModelForCausalLM.from_pretrained('model')
|
21 |
-
# Загрузка токенизатора
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained('model')
|
23 |
-
return (model, tokenizer)
|
24 |
-
|
25 |
-
|
26 |
-
# Генерация отзыва
|
27 |
-
def gen_review(input_text):
|
28 |
-
(model, tokenizer) = get_model()
|
29 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
30 |
-
output = model.generate(
|
31 |
-
input_ids,
|
32 |
-
max_length=300,
|
33 |
-
num_return_sequences=1,
|
34 |
-
no_repeat_ngram_size=2,
|
35 |
-
do_sample=True,
|
36 |
-
top_p=0.95,
|
37 |
-
top_k=60,
|
38 |
-
temperature=0.9,
|
39 |
-
eos_token_id=tokenizer.eos_token_id,
|
40 |
-
)
|
41 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
-
|
43 |
-
|
44 |
-
def capitalize_and_punctuate(text):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
#
|
79 |
-
# st.sidebar.
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
generated_text =
|
93 |
-
st.
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
# Setting up the page configuration for Streamlit App
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Generate reviews",
|
11 |
+
# layout="wide",
|
12 |
+
initial_sidebar_state="expanded"
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
# Загрузка модели и токенизатора
|
17 |
+
#@st.cache_data()
|
18 |
+
def get_model():
|
19 |
+
# Загрузка модели
|
20 |
+
model = AutoModelForCausalLM.from_pretrained('model')
|
21 |
+
# Загрузка токенизатора
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained('model')
|
23 |
+
return (model, tokenizer)
|
24 |
+
|
25 |
+
|
26 |
+
# Генерация отзыва
|
27 |
+
def gen_review(input_text):
|
28 |
+
(model, tokenizer) = get_model()
|
29 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
30 |
+
output = model.generate(
|
31 |
+
input_ids,
|
32 |
+
max_length=300,
|
33 |
+
num_return_sequences=1,
|
34 |
+
no_repeat_ngram_size=2,
|
35 |
+
do_sample=True,
|
36 |
+
top_p=0.95,
|
37 |
+
top_k=60,
|
38 |
+
temperature=0.9,
|
39 |
+
eos_token_id=tokenizer.eos_token_id,
|
40 |
+
)
|
41 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
|
44 |
+
def capitalize_and_punctuate(text):
|
45 |
+
nltk.download('punkt')
|
46 |
+
# Разделяем текст на предложения
|
47 |
+
sentences = sent_tokenize(text)
|
48 |
+
|
49 |
+
# Проверка последнего предложения
|
50 |
+
last_sentence = sentences[-1]
|
51 |
+
if not last_sentence.endswith('.'):
|
52 |
+
sentences.pop()
|
53 |
+
|
54 |
+
# Обрабатываем оставшиеся предложения
|
55 |
+
corrected_sentences = []
|
56 |
+
for sentence in sentences:
|
57 |
+
words = word_tokenize(sentence)
|
58 |
+
|
59 |
+
# Делаем первую букву первого слова заглавной
|
60 |
+
if len(words) > 0:
|
61 |
+
words[0] = words[0].capitalize()
|
62 |
+
|
63 |
+
# Собираем обратно предложение
|
64 |
+
corrected_sentence = ' '.join(words)
|
65 |
+
corrected_sentences.append(corrected_sentence)
|
66 |
+
|
67 |
+
# Объединяем все предложения в единый текст
|
68 |
+
final_text = ' '.join(corrected_sentences)
|
69 |
+
|
70 |
+
return final_text
|
71 |
+
|
72 |
+
|
73 |
+
# Main function
|
74 |
+
def main():
|
75 |
+
if 'btn_predict' not in st.session_state:
|
76 |
+
st.session_state['btn_predict'] = False
|
77 |
+
|
78 |
+
# Sidebar
|
79 |
+
# st.sidebar.markdown(''' # New York City Taxi Trip Duration''')
|
80 |
+
# st.sidebar.image("img/taxi_img.png")
|
81 |
+
|
82 |
+
category = st.text_input("Категория:", value="Кондитерская")
|
83 |
+
rating = st.slider("Рейтинг", 1, 5, 1)
|
84 |
+
key_words = st.text_input("Ключевые слова", value="десерт, торт, цена")
|
85 |
+
|
86 |
+
# Ввод новых параметров
|
87 |
+
input_text = f"Категория: {category}; Рейтинг: {rating}; Ключевые слова: {key_words} -> Отзыв:"
|
88 |
+
|
89 |
+
|
90 |
+
st.session_state['btn_predict'] = st.button('Generate')
|
91 |
+
if st.session_state['btn_predict']:
|
92 |
+
generated_text = gen_review(input_text)
|
93 |
+
with st.spinner('Wait for it...'):
|
94 |
+
generated_text = capitalize_and_punctuate(generated_text)
|
95 |
+
st.text(generated_text)
|
96 |
+
st.success("Done!")
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|
103 |
+
|