File size: 5,758 Bytes
4ddb7d1 b9bbe8c 4ddb7d1 b9bbe8c 4ddb7d1 b9bbe8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
from haystack.components.generators import OpenAIGenerator
from haystack.utils import Secret
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.routers import ConditionalRouter
from haystack import Pipeline
from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.converters.txt import TextFileToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers import InMemoryEmbeddingRetriever
import gradio as gr
embedding_model = "dunzhang/stella_en_400M_v5"
########################
####### Indexing #######
########################
# In memory version for now
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
converter = TextFileToDocument()
cleaner = DocumentCleaner()
splitter = DocumentSplitter(split_by="word", split_length=200, split_overlap=100)
embedder = SentenceTransformersDocumentEmbedder(model=embedding_model,
trust_remote_code=True)
writer = DocumentWriter(document_store=document_store)
indexing = Pipeline()
indexing.add_component("converter", converter)
indexing.add_component("cleaner", cleaner)
indexing.add_component("splitter", splitter)
indexing.add_component("embedder", embedder)
indexing.add_component("writer", writer)
indexing.connect("converter", "cleaner")
indexing.connect("cleaner", "splitter")
indexing.connect("splitter", "embedder")
indexing.connect("embedder", "writer")
indexing.run({"sources": ["knowledge-plain.txt"]})
##################################
####### Answering pipeline #######
##################################
no_answer_message = (
"I'm not allowed to answer this question. Please ask something related to "
"APIs access in accordance DSA’s transparency and data-sharing provisions. "
"Is there anything else I can do for you? "
)
relevance_prompt_template = """
Classify whether this user is asking for something related to social media APIs,
the Digital Services Act (DSA), or any topic related to online platforms’ compliance
with legal and data-sharing frameworks.
Relevant topics include social media API access, data transparency, compliance
with DSA provisions, and online platform regulations.
Here is their message:
{{query}}
Here are the two previous messages. ONLY refer to these if the above message refers previous ones.
{% for message in user_history[-2:] %}
* {{message["content"]}}
{% endfor %}
If the request is related to these topics, respond “YES”. If it is off-topic (e.g., unrelated to APIs, the DSA, or legal frameworks), respond “NO”."""
routes = [
{
"condition": "{{'YES' in replies[0]}}",
"output": "{{query}}",
"output_name": "query",
"output_type": str,
},
{
"condition": "{{'NO' in replies[0]}}",
"output": no_answer_message,
"output_name": "no_answer",
"output_type": str,
}
]
query_prompt_template = """Conversation history:
{{conv_history}}
Here is what the user has requested:
{{query}}
Reply to the question with a short paragraph according to the following documents:
{% for document in documents %}
* {{document.content}}
{% endfor %}
Do not mention the documents in your answer, present it as your own knowledge.
"""
prompt_builder = PromptBuilder(template=relevance_prompt_template)
llm = OpenAIGenerator(
api_key=Secret.from_env_var("OPENAI_API_KEY"),
model="gpt-4o-mini",
generation_kwargs = {"max_tokens": 8192}
)
router = ConditionalRouter(routes=routes)
embedder = SentenceTransformersTextEmbedder(model=embedding_model)
# Again: in memory for now
retriever = InMemoryEmbeddingRetriever(document_store)
prompt_builder2 = PromptBuilder(template=query_prompt_template)
llm2 = OpenAIGenerator(
api_key=Secret.from_env_var("OPENAI_API_KEY"),
model="gpt-4o-mini",
generation_kwargs = {"max_tokens": 8192}
)
answer_query = Pipeline()
answer_query.add_component("prompt_builder", prompt_builder)
answer_query.add_component("llm", llm)
answer_query.add_component("router", router)
answer_query.add_component("embedder", embedder)
answer_query.add_component("retriever", retriever)
answer_query.add_component("prompt_builder2", prompt_builder2)
answer_query.add_component("llm2", llm2)
answer_query.connect("prompt_builder", "llm")
answer_query.connect("llm", "router")
answer_query.connect("router.query", "embedder")
answer_query.connect("embedder", "retriever")
answer_query.connect("retriever", "prompt_builder2")
answer_query.connect("prompt_builder2", "llm2")
answer_query.warm_up()
##########################
####### Gradio app #######
##########################
def chat(message, history):
"""
Chat function for Gradio. Uses the pipeline to produce next answer.
"""
conv_history = "\n\n".join([f"{message['role']}: {message['content']}" for message in history[-2:]])
user_history = [message for message in history if message["role"] == "user"]
results = answer_query.run({"user_history": user_history, "query": message,
"conv_history": conv_history})
if "llm2" in results:
answer = results["llm2"]["replies"][0]
elif "router" in results and "no_answer" in results["router"]:
answer = results["router"]["no_answer"]
else:
answer = "Sorry, a mistake occured"
return answer
if __name__ == "__main__":
gr.ChatInterface(chat, type="messages").launch() |