ThreatLevelD
commited on
Commit
·
8652e94
1
Parent(s):
9b2f3b7
Refactored main.py
Browse files- gradio_ui.py +148 -42
- main.py +7 -5
gradio_ui.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import yaml
|
3 |
import os
|
|
|
|
|
|
|
4 |
|
5 |
from core.codex_informer import CodexInformer
|
6 |
from core.eil_processor import EILProcessor
|
@@ -8,35 +11,73 @@ from core.esil_inference import ESILInference
|
|
8 |
from core.eris_reasoner import ERISReasoner
|
9 |
from core.fec_controller import FECController
|
10 |
|
11 |
-
#
|
12 |
codex_informer = CodexInformer()
|
13 |
eil_processor = EILProcessor(codex_informer)
|
14 |
esil_formatter = ESILInference(codex_informer)
|
15 |
eris_engine = ERISReasoner()
|
16 |
fec_controller = FECController()
|
17 |
|
18 |
-
#
|
|
|
19 |
config_path = os.path.join("config", "response_strategies.yaml")
|
20 |
with open(config_path, 'r', encoding='utf-8') as f:
|
21 |
response_strategies = yaml.safe_load(f).get('response_strategies', {})
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Step 1: EIL Processing
|
28 |
-
eil_result = eil_processor.infer_emotion(
|
29 |
-
|
30 |
|
31 |
# Step 2: ESIL Formatting
|
32 |
esil_packet = esil_formatter.infer_esil(eil_result)
|
33 |
-
|
34 |
|
35 |
# Step 3: ERIS Reasoning
|
36 |
eris_result = eris_engine.reason_emotion_state(esil_packet)
|
37 |
-
|
38 |
|
39 |
-
# Pull out your primary_emotion_code (case-agnostic)
|
40 |
fam_code = (
|
41 |
eris_result.get('primary_emotion_code') or
|
42 |
eris_result.get('Primary Emotion Code') or
|
@@ -45,6 +86,16 @@ def process_input(user_text):
|
|
45 |
if not fam_code:
|
46 |
raise KeyError("`primary_emotion_code` missing in ERIS result")
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Lookup response strategy
|
49 |
rs = response_strategies.get(fam_code, {})
|
50 |
rsm_code = rs.get('rsm_code', 'RSM-UNKNOWN')
|
@@ -57,44 +108,99 @@ def process_input(user_text):
|
|
57 |
f"{sample_response}"
|
58 |
)
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
except Exception as e:
|
74 |
-
|
75 |
-
return
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
inputs=[user_input],
|
94 |
-
outputs=[fusion_prompt_display, empathic_response_display]
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
launch_ui()
|
|
|
1 |
import gradio as gr
|
2 |
import yaml
|
3 |
import os
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
from googletrans import Translator
|
7 |
|
8 |
from core.codex_informer import CodexInformer
|
9 |
from core.eil_processor import EILProcessor
|
|
|
11 |
from core.eris_reasoner import ERISReasoner
|
12 |
from core.fec_controller import FECController
|
13 |
|
14 |
+
# 1️⃣ --- SETUP & BRANDING ---
|
15 |
codex_informer = CodexInformer()
|
16 |
eil_processor = EILProcessor(codex_informer)
|
17 |
esil_formatter = ESILInference(codex_informer)
|
18 |
eris_engine = ERISReasoner()
|
19 |
fec_controller = FECController()
|
20 |
|
21 |
+
logo_path = "D:\EmpathyEthics\MEC docs\GIT\mec-mvp\assets\Transparent_logo_40.webp" # Update if needed
|
22 |
+
|
23 |
config_path = os.path.join("config", "response_strategies.yaml")
|
24 |
with open(config_path, 'r', encoding='utf-8') as f:
|
25 |
response_strategies = yaml.safe_load(f).get('response_strategies', {})
|
26 |
|
27 |
+
LANGS = {
|
28 |
+
"English": "en",
|
29 |
+
"Spanish": "es",
|
30 |
+
"French": "fr",
|
31 |
+
"Chinese (Simplified)": "zh-cn",
|
32 |
+
"German": "de"
|
33 |
+
}
|
34 |
+
DEFAULT_LANG = "English"
|
35 |
+
DEFAULT_TONE = "Empathic (Default)"
|
36 |
+
TONES = [
|
37 |
+
"Empathic (Default)",
|
38 |
+
"Direct",
|
39 |
+
"Gentle",
|
40 |
+
"Encouraging",
|
41 |
+
"Reflective"
|
42 |
+
]
|
43 |
+
|
44 |
+
translator = Translator()
|
45 |
+
|
46 |
+
def translate_text(text, target_lang_code):
|
47 |
+
if target_lang_code == "en":
|
48 |
+
return text
|
49 |
try:
|
50 |
+
result = translator.translate(text, dest=target_lang_code)
|
51 |
+
return result.text
|
52 |
+
except Exception:
|
53 |
+
return f"[Translation Error] {text}"
|
54 |
+
|
55 |
+
# 2️⃣ --- PIPELINE ---
|
56 |
+
def process_input(user_text, selected_tone, selected_language):
|
57 |
+
trace = []
|
58 |
+
try:
|
59 |
+
trace.append(f"[DEBUG] Input Text: {user_text!r}")
|
60 |
+
trace.append(f"[DEBUG] Selected Tone: {selected_tone}")
|
61 |
+
trace.append(f"[DEBUG] Selected Language: {selected_language}")
|
62 |
+
|
63 |
+
# Optionally translate input to English if not already (for model)
|
64 |
+
lang_code = LANGS.get(selected_language, "en")
|
65 |
+
user_text_en = translate_text(user_text, "en") if lang_code != "en" else user_text
|
66 |
+
if lang_code != "en":
|
67 |
+
trace.append(f"[DEBUG] Translated input to English: {user_text_en}")
|
68 |
|
69 |
# Step 1: EIL Processing
|
70 |
+
eil_result = eil_processor.infer_emotion(user_text_en)
|
71 |
+
trace.append(f"[DEBUG] EIL Result: {eil_result}")
|
72 |
|
73 |
# Step 2: ESIL Formatting
|
74 |
esil_packet = esil_formatter.infer_esil(eil_result)
|
75 |
+
trace.append(f"[DEBUG] ESIL Packet: {esil_packet}")
|
76 |
|
77 |
# Step 3: ERIS Reasoning
|
78 |
eris_result = eris_engine.reason_emotion_state(esil_packet)
|
79 |
+
trace.append(f"[DEBUG] ERIS Result: {eris_result}")
|
80 |
|
|
|
81 |
fam_code = (
|
82 |
eris_result.get('primary_emotion_code') or
|
83 |
eris_result.get('Primary Emotion Code') or
|
|
|
86 |
if not fam_code:
|
87 |
raise KeyError("`primary_emotion_code` missing in ERIS result")
|
88 |
|
89 |
+
# Pass tone through to Fusion Engine
|
90 |
+
final_uesp = {
|
91 |
+
'emotion_family': eris_result.get('emotion_family', fam_code),
|
92 |
+
'Primary Emotion Code': fam_code,
|
93 |
+
'response_tone': selected_tone, # This is new!
|
94 |
+
**eris_result
|
95 |
+
}
|
96 |
+
fusion_prompt = fec_controller.generate_prompt(final_uesp)
|
97 |
+
trace.append(f"[DEBUG] Fusion Prompt Generated: {fusion_prompt}")
|
98 |
+
|
99 |
# Lookup response strategy
|
100 |
rs = response_strategies.get(fam_code, {})
|
101 |
rsm_code = rs.get('rsm_code', 'RSM-UNKNOWN')
|
|
|
108 |
f"{sample_response}"
|
109 |
)
|
110 |
|
111 |
+
# Optionally translate output back to user language
|
112 |
+
if lang_code != "en":
|
113 |
+
fusion_prompt = translate_text(fusion_prompt, lang_code)
|
114 |
+
simulated_output = translate_text(simulated_output, lang_code)
|
115 |
+
|
116 |
+
# 3️⃣ --- EMPATHY REPORT GENERATION ---
|
117 |
+
report_contents = (
|
118 |
+
f"Empathy Report - MEC MVP\n"
|
119 |
+
f"Date: {datetime.now().isoformat(timespec='seconds')}\n"
|
120 |
+
f"Input: {user_text}\n"
|
121 |
+
f"Tone: {selected_tone}\n"
|
122 |
+
f"Language: {selected_language}\n"
|
123 |
+
f"\n"
|
124 |
+
f"Primary Emotion: {fam_code}\n"
|
125 |
+
f"Blend: {eris_result.get('blend')}\n"
|
126 |
+
f"Arc: {eris_result.get('arc')}\n"
|
127 |
+
f"Resonance: {eris_result.get('resonance')}\n"
|
128 |
+
f"\n"
|
129 |
+
f"Fusion Prompt:\n{fusion_prompt}\n"
|
130 |
+
f"\n"
|
131 |
+
f"Simulated Empathic Response:\n{simulated_output}\n"
|
132 |
+
)
|
133 |
+
report_file = f"/tmp/mec_empathy_report_{datetime.now().strftime('%Y%m%d%H%M%S')}.txt"
|
134 |
+
with open(report_file, "w", encoding='utf-8') as f:
|
135 |
+
f.write(report_contents)
|
136 |
+
|
137 |
+
return (
|
138 |
+
fusion_prompt,
|
139 |
+
simulated_output,
|
140 |
+
"\n".join(trace),
|
141 |
+
report_file
|
142 |
+
)
|
143 |
except Exception as e:
|
144 |
+
trace.append(f"[ERROR] Exception in process_input: {e}")
|
145 |
+
return (
|
146 |
+
"[ERROR: Unable to process input]",
|
147 |
+
f"An error occurred: {e}",
|
148 |
+
"\n".join(trace),
|
149 |
+
None
|
150 |
+
)
|
151 |
|
152 |
+
# 4️⃣ --- UI LAYOUT ---
|
153 |
+
with gr.Blocks(title="MEC MVP – Empathic UI", theme="soft", css="#logo-img {margin-bottom: -30px;}") as demo:
|
154 |
+
# Branding: Logo & Title
|
155 |
+
with gr.Row():
|
156 |
+
gr.Image(value=logo_path, label="", show_label=False, height=100, elem_id="logo-img")
|
157 |
+
gr.Markdown("## Master Emotional Core (MEC) MVP UI\nEmpathy-first AI. Built to protect.")
|
158 |
+
|
159 |
+
# Guided Onboarding
|
160 |
+
gr.Markdown(
|
161 |
+
"Welcome to the MEC Empathy MVP! Enter a story, thought, or feeling below and select a tone or language for the response. "
|
162 |
+
"You can expand the Emotional Reasoning Trace below to see how the AI made its decision. "
|
163 |
+
"Download your empathy report after each run for further review or research."
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
user_input = gr.Textbox(
|
168 |
+
label="Enter your message or story:",
|
169 |
+
placeholder="Type here... (Long-form, multi-sentence, or single phrase)",
|
170 |
+
lines=5,
|
171 |
+
info="Try stories, complex feelings, or emotional blends!"
|
172 |
+
)
|
173 |
|
174 |
+
with gr.Row():
|
175 |
+
selected_tone = gr.Dropdown(
|
176 |
+
choices=TONES,
|
177 |
+
value=DEFAULT_TONE,
|
178 |
+
label="Select Empathic Response Tone",
|
179 |
+
info="Choose how the AI should frame its empathic response."
|
180 |
+
)
|
181 |
+
selected_language = gr.Dropdown(
|
182 |
+
choices=list(LANGS.keys()),
|
183 |
+
value=DEFAULT_LANG,
|
184 |
+
label="Language",
|
185 |
+
info="Choose your preferred language for input/output."
|
186 |
+
)
|
187 |
|
188 |
+
with gr.Row():
|
189 |
+
submit_button = gr.Button("Process Input")
|
190 |
+
download_report_btn = gr.File(label="Download Empathy Report", visible=True)
|
191 |
|
192 |
+
with gr.Row():
|
193 |
+
fusion_prompt_display = gr.Textbox(label="Fusion Prompt", lines=5, interactive=False)
|
194 |
+
empathic_response_display = gr.Textbox(label="Simulated Empathic Response", lines=7, interactive=False)
|
195 |
|
196 |
+
with gr.Accordion("Show Emotional Reasoning Trace (Technical)", open=False):
|
197 |
+
reasoning_trace = gr.Textbox(label="Debug/Trace", lines=15, interactive=False)
|
|
|
|
|
|
|
198 |
|
199 |
+
# Submit logic
|
200 |
+
submit_button.click(
|
201 |
+
fn=process_input,
|
202 |
+
inputs=[user_input, selected_tone, selected_language],
|
203 |
+
outputs=[fusion_prompt_display, empathic_response_display, reasoning_trace, download_report_btn]
|
204 |
+
)
|
205 |
|
206 |
+
demo.launch()
|
|
main.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from core.eil_processor import EILProcessor
|
2 |
from core.esil_inference import ESILInference
|
3 |
from core.eris_reasoner import ERISReasoner
|
@@ -13,15 +14,16 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
13 |
with open('config/response_strategies.yaml', 'r', encoding='utf-8') as f:
|
14 |
response_strategies = yaml.safe_load(f)['response_strategies']
|
15 |
|
16 |
-
# 1️⃣ EIL Processor (handles both normalization and emotion processing)
|
17 |
-
|
|
|
18 |
|
19 |
# Run emotion inference
|
20 |
eil_packet = eil.infer_emotion(user_input_text)
|
21 |
print(f"[Main] EIL Packet Output: {eil_packet}")
|
22 |
|
23 |
# 2️⃣ ESIL Inference
|
24 |
-
esil = ESILInference()
|
25 |
esil_packet = esil.infer_esil(eil_packet)
|
26 |
|
27 |
# 3️⃣ Forced HEI Mode: Ensure it forces the low confidence path if True
|
@@ -45,7 +47,7 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
45 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
46 |
|
47 |
# 6️⃣ Simulated Empathic Response
|
48 |
-
fam_code = final_uesp
|
49 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
50 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
51 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
@@ -76,7 +78,7 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
76 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
77 |
|
78 |
# 8️⃣ Simulated Empathic Response
|
79 |
-
fam_code = final_uesp
|
80 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
81 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
82 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
|
|
1 |
+
from core.codex_informer import CodexInformer
|
2 |
from core.eil_processor import EILProcessor
|
3 |
from core.esil_inference import ESILInference
|
4 |
from core.eris_reasoner import ERISReasoner
|
|
|
14 |
with open('config/response_strategies.yaml', 'r', encoding='utf-8') as f:
|
15 |
response_strategies = yaml.safe_load(f)['response_strategies']
|
16 |
|
17 |
+
# 1️⃣ CodexInformer and EIL Processor (handles both normalization and emotion processing)
|
18 |
+
codex_informer = CodexInformer()
|
19 |
+
eil = EILProcessor(codex_informer)
|
20 |
|
21 |
# Run emotion inference
|
22 |
eil_packet = eil.infer_emotion(user_input_text)
|
23 |
print(f"[Main] EIL Packet Output: {eil_packet}")
|
24 |
|
25 |
# 2️⃣ ESIL Inference
|
26 |
+
esil = ESILInference(codex_informer)
|
27 |
esil_packet = esil.infer_esil(eil_packet)
|
28 |
|
29 |
# 3️⃣ Forced HEI Mode: Ensure it forces the low confidence path if True
|
|
|
47 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
48 |
|
49 |
# 6️⃣ Simulated Empathic Response
|
50 |
+
fam_code = final_uesp.get('primary_emotion_code') or final_uesp.get('Primary Emotion Code')
|
51 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
52 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
53 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
|
|
78 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
79 |
|
80 |
# 8️⃣ Simulated Empathic Response
|
81 |
+
fam_code = final_uesp.get('primary_emotion_code') or final_uesp.get('Primary Emotion Code')
|
82 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
83 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
84 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|