Emroi commited on
Commit
4b469ef
1 Parent(s): 38d2673

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -48
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
@@ -7,57 +9,29 @@ For more information on `huggingface_hub` Inference API support, please check th
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
 
6
  """
7
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
 
 
 
 
 
 
 
 
 
 
12
 
 
 
 
 
 
13
 
 
14
 
15
+ model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4",
16
+ device_map="auto",
17
+ attn_implementation="flash_attention_2",
18
+ torch_dtype=torch.bfloat16)
19
 
20
+ tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4")
21
+ from transformers import AutoTokenizer, pipeline
22
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
23
+ prompts = [
24
+ "В чем разница между фруктом и овощем?",
25
+ "Годы жизни колмагорова?"]
 
 
26
 
27
+ def test_inference(prompt):
28
+ prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
29
+ print(prompt)
30
+ outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
31
+ return outputs[0]['generated_text'][len(prompt):].strip()
32
 
33
+
34
+ for prompt in prompts:
35
+ print(f" prompt:\n{prompt}")
36
+ print(f" response:\n{test_inference(prompt)}")
37
+ print("-"*50)