Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -7,57 +9,29 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
+
model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4",
|
16 |
+
device_map="auto",
|
17 |
+
attn_implementation="flash_attention_2",
|
18 |
+
torch_dtype=torch.bfloat16)
|
19 |
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4")
|
21 |
+
from transformers import AutoTokenizer, pipeline
|
22 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
23 |
+
prompts = [
|
24 |
+
"В чем разница между фруктом и овощем?",
|
25 |
+
"Годы жизни колмагорова?"]
|
|
|
|
|
26 |
|
27 |
+
def test_inference(prompt):
|
28 |
+
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
|
29 |
+
print(prompt)
|
30 |
+
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
|
31 |
+
return outputs[0]['generated_text'][len(prompt):].strip()
|
32 |
|
33 |
+
|
34 |
+
for prompt in prompts:
|
35 |
+
print(f" prompt:\n{prompt}")
|
36 |
+
print(f" response:\n{test_inference(prompt)}")
|
37 |
+
print("-"*50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|