File size: 2,596 Bytes
af71291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from flask import Flask, request, jsonify, render_template
import librosa
import torch
import Levenshtein
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from io import BytesIO
from flask_cors import CORS
from pydub import AudioSegment  # NEW

app = Flask(__name__)
CORS(app)

MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)


def convert_to_wav(audio_bytes):
    """Convert audio bytes to wav format using pydub"""
    try:
        audio = AudioSegment.from_file(BytesIO(audio_bytes))  # Auto-detect format
        wav_io = BytesIO()
        audio.export(wav_io, format="wav")
        wav_io.seek(0)
        return wav_io
    except Exception as e:
        print(f"Error converting audio: {e}")
        return None


def transcribe_audio_hf(audio_bytes):
    """Transcribes the audio using a pretrained Wav2Vec2 model."""
    wav_io = convert_to_wav(audio_bytes)  # Convert to wav
    if wav_io is None:
        raise Exception("Could not convert audio to WAV format")

    speech_array, sampling_rate = librosa.load(wav_io, sr=16000)
    input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0].strip()
    return transcription


def levenshtein_similarity(transcription1, transcription2):
    distance = Levenshtein.distance(transcription1, transcription2)
    max_len = max(len(transcription1), len(transcription2))
    return 1 - distance / max_len


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/transcribe', methods=['POST'])
def transcribe():
    original_audio = request.files['original_audio']
    user_audio = request.files['user_audio']

    original_audio_bytes = original_audio.read()
    user_audio_bytes = user_audio.read()

    try:
        transcription_original = transcribe_audio_hf(original_audio_bytes)
        transcription_user = transcribe_audio_hf(user_audio_bytes)
    except Exception as e:
        return jsonify({"error": str(e)}), 500

    similarity_score = levenshtein_similarity(transcription_original, transcription_user)

    return jsonify({
        "transcription_original": transcription_original,
        "transcription_user": transcription_user,
        "similarity_score": similarity_score
    })


if __name__ == '__main__':
    app.run(debug=True)