import gradio as gr import requests import Levenshtein import librosa import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor def load_model(): MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) return processor, model processor, model = load_model() def transcribe_audio_hf(audio_path): """ Transcribes speech from an audio file using a pretrained Wav2Vec2 model. Args: audio_path (str): Path to the audio file. Returns: str: The transcription of the speech in the audio file. """ speech_array, sampling_rate = librosa.load(audio_path, sr=16000) input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0].strip() return transcription def levenshtein_similarity(transcription1, transcription2): """ Calculate the Levenshtein similarity between two transcriptions. Args: transcription1 (str): The first transcription. transcription2 (str): The second transcription. Returns: float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions. """ distance = Levenshtein.distance(transcription1, transcription2) max_len = max(len(transcription1), len(transcription2)) return 1 - distance / max_len # Normalize to get similarity score def evaluate_audio_similarity(original_audio, user_audio): """ Compares the similarity between the transcription of an original audio file and a user's audio file. Args: original_audio (str): Path to the original audio file. user_audio (str): Path to the user's audio file. Returns: tuple: Transcriptions and Levenshtein similarity score. """ transcription_original = transcribe_audio_hf(original_audio) transcription_user = transcribe_audio_hf(user_audio) similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user) return transcription_original, transcription_user, similarity_score_levenshtein def perform_testing(original_audio, user_audio): if original_audio is not None and user_audio is not None: transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio, user_audio) return ( f"**Original Transcription:** {transcription_original}", f"**User Transcription:** {transcription_user}", f"**Levenshtein Similarity Score:** {similarity_score:.2f}" ) # Gradio Interface with gr.Blocks() as app: gr.Markdown("# Audio Transcription and Similarity Checker") original_audio_upload = gr.Audio(label="Upload Original Audio", type="filepath") user_audio_upload = gr.Audio(label="Upload User Audio", type="filepath") upload_button = gr.Button("Perform Testing") output_original_transcription = gr.Markdown() output_user_transcription = gr.Markdown() output_similarity_score = gr.Markdown() upload_button.click( perform_testing, inputs=[original_audio_upload, user_audio_upload], outputs=[output_original_transcription, output_user_transcription, output_similarity_score] ) app.launch(share=True)