File size: 6,864 Bytes
a72c9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import streamlit as st
import os
import pickle
import time
import g4f
import tempfile
import PyPDF2
from pdf2image import convert_from_path
import pytesseract

st.set_page_config(page_title="EDUCATIONAL ASSISTANT")

st.markdown(
    """
    <style>
        .title {
            text-align: center;
            font-size: 2em;
            font-weight: bold;
        }
    </style>
    <div class="title"> πŸ“š EDUCATIONAL ASSISTANT πŸ“š</div>
    """,
    unsafe_allow_html=True
)
# Load and Save Conversations
conversations_file = "conversations.pkl"


@st.cache_data
def load_conversations():
    try:
        with open(conversations_file, "rb") as f:
            return pickle.load(f)
    except (FileNotFoundError, EOFError):
        return []


def save_conversations(conversations):
    temp_conversations_file = conversations_file
    with open(temp_conversations_file, "wb") as f:
        pickle.dump(conversations, f)
    os.replace(temp_conversations_file, conversations_file)


if 'conversations' not in st.session_state:
    st.session_state.conversations = load_conversations()

if 'current_conversation' not in st.session_state:
    st.session_state.current_conversation = [{"role": "assistant", "content": "How may I assist you today?"}]


def truncate_string(s, length=30):
    return s[:length].rstrip() + "..." if len(s) > length else s


def display_chats_sidebar():
    with st.sidebar.container():
        st.header('Settings')
        col1, col2 = st.columns([1, 1])

        with col1:
            if col1.button('Start New Chat', key="new_chat"):
                st.session_state.current_conversation = []
                st.session_state.conversations.append(st.session_state.current_conversation)

        with col2:
            if col2.button('Clear All Chats', key="clear_all"):
                st.session_state.conversations = []
                st.session_state.current_conversation = []

    if st.sidebar.button('Solve Assignment', key="summarize_bills", use_container_width=True):
        st.session_state.page = "summarize_bills"

    with st.sidebar.container():
        st.header('Conversations')
        for idx, conversation in enumerate(st.session_state.conversations):
            if conversation:
                chat_title_raw = next((msg["content"] for msg in conversation if msg["role"] == "user"), "New Chat")
                chat_title = truncate_string(chat_title_raw)
                if st.sidebar.button(f"{chat_title}", key=f"chat_button_{idx}"):
                    st.session_state.current_conversation = st.session_state.conversations[idx]


def summarize_bill():
    st.header("πŸ“š Solve PDF Assignments πŸ“œ")

    if st.button("Back to Chat"):
        st.session_state.page = "chat"

    uploaded_file = st.file_uploader("Upload an Agreement", type=['pdf'])
    if uploaded_file is not None:
        with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
            tmp_file.write(uploaded_file.read())
            extracted_text = extract_text_from_pdf(tmp_file.name)

        if st.button('Solve'):
            # Assuming g4f.ChatCompletion can be used for summarization
            # Replace with appropriate summarization logic if needed
            summary = g4f.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[{"role": "user", "content": "Please solve this Agreement: \n" + extracted_text}],
                temperature=0.5,  # You can adjust parameters as needed
                max_tokens=150  # Adjust the token limit as needed
            )
            st.text_area("Summary", summary, height=400)


def extract_text_from_pdf(file_path: str) -> str:
    try:
        with open(file_path, 'rb') as file:
            reader = PyPDF2.PdfReader(file)
            text = ''
            for page_number in range(len(reader.pages)):
                page = reader.pages[page_number]
                text += page.extract_text()
        return text
    except Exception as e:
        try:
            images = convert_from_path(file_path)
            extracted_texts = [pytesseract.image_to_string(image) for image in images]
            return "\n".join(extracted_texts)
        except Exception as e:
            raise ValueError(f"Failed to process {file_path} using PDF Reader and OCR. Error: {e}")


def main_app():
    for message in st.session_state.current_conversation:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    def generate_response(prompt_input):
        string_dialogue = '''
         You are an educational assistant chatbot, designed to provide insightful and accurate answers in the educational domain. Your responses should be engaging and emulate a human educator to create a comfortable learning environment. Instead of simply presenting facts, aim to inspire curiosity and deeper understanding.
        
        Context:
        
            Understand the essence of the user's educational query.
            Consider the academic level and subject matter of the question.
            Access a broad knowledge base to provide well-informed responses.
            Organize the response clearly and logically.
            Deliver the answer in a manner that is both educational and relatable to human interaction.
        
        Human:
        '''
        for dict_message in st.session_state.current_conversation:
            string_dialogue += dict_message["role"].capitalize() + ": " + dict_message["content"] + "\\n\\n"

        prompt = f"{string_dialogue}\n  {prompt_input} Assistant: "
        response_generator = g4f.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": prompt}],
            stream=True,
        )
        return response_generator

    if prompt := st.chat_input('Send a Message'):
        st.session_state.current_conversation.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                response = generate_response(prompt)
                placeholder = st.empty()
                full_response = ''
                for item in response:
                    full_response += item
                    time.sleep(0.003)
                    placeholder.markdown(full_response)
                placeholder.markdown(full_response)
                st.session_state.current_conversation.append({"role": "assistant", "content": full_response})
                save_conversations(st.session_state.conversations)


display_chats_sidebar()
if st.session_state.get('page') == "summarize_bills":
    summarize_bill()
elif st.session_state.get('page') == "chat":
    main_app()
else:
    # Default page when the app starts or when the state is not set
    main_app()