muzammil-eds's picture
Rename education.py to app.py
673cd84
raw
history blame
6.86 kB
import streamlit as st
import os
import pickle
import time
import g4f
import tempfile
import PyPDF2
from pdf2image import convert_from_path
import pytesseract
st.set_page_config(page_title="EDUCATIONAL ASSISTANT")
st.markdown(
"""
<style>
.title {
text-align: center;
font-size: 2em;
font-weight: bold;
}
</style>
<div class="title"> πŸ“š EDUCATIONAL ASSISTANT πŸ“š</div>
""",
unsafe_allow_html=True
)
# Load and Save Conversations
conversations_file = "conversations.pkl"
@st.cache_data
def load_conversations():
try:
with open(conversations_file, "rb") as f:
return pickle.load(f)
except (FileNotFoundError, EOFError):
return []
def save_conversations(conversations):
temp_conversations_file = conversations_file
with open(temp_conversations_file, "wb") as f:
pickle.dump(conversations, f)
os.replace(temp_conversations_file, conversations_file)
if 'conversations' not in st.session_state:
st.session_state.conversations = load_conversations()
if 'current_conversation' not in st.session_state:
st.session_state.current_conversation = [{"role": "assistant", "content": "How may I assist you today?"}]
def truncate_string(s, length=30):
return s[:length].rstrip() + "..." if len(s) > length else s
def display_chats_sidebar():
with st.sidebar.container():
st.header('Settings')
col1, col2 = st.columns([1, 1])
with col1:
if col1.button('Start New Chat', key="new_chat"):
st.session_state.current_conversation = []
st.session_state.conversations.append(st.session_state.current_conversation)
with col2:
if col2.button('Clear All Chats', key="clear_all"):
st.session_state.conversations = []
st.session_state.current_conversation = []
if st.sidebar.button('Solve Assignment', key="summarize_bills", use_container_width=True):
st.session_state.page = "summarize_bills"
with st.sidebar.container():
st.header('Conversations')
for idx, conversation in enumerate(st.session_state.conversations):
if conversation:
chat_title_raw = next((msg["content"] for msg in conversation if msg["role"] == "user"), "New Chat")
chat_title = truncate_string(chat_title_raw)
if st.sidebar.button(f"{chat_title}", key=f"chat_button_{idx}"):
st.session_state.current_conversation = st.session_state.conversations[idx]
def summarize_bill():
st.header("πŸ“š Solve PDF Assignments πŸ“œ")
if st.button("Back to Chat"):
st.session_state.page = "chat"
uploaded_file = st.file_uploader("Upload an Agreement", type=['pdf'])
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.read())
extracted_text = extract_text_from_pdf(tmp_file.name)
if st.button('Solve'):
# Assuming g4f.ChatCompletion can be used for summarization
# Replace with appropriate summarization logic if needed
summary = g4f.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Please solve this Agreement: \n" + extracted_text}],
temperature=0.5, # You can adjust parameters as needed
max_tokens=150 # Adjust the token limit as needed
)
st.text_area("Summary", summary, height=400)
def extract_text_from_pdf(file_path: str) -> str:
try:
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page_number in range(len(reader.pages)):
page = reader.pages[page_number]
text += page.extract_text()
return text
except Exception as e:
try:
images = convert_from_path(file_path)
extracted_texts = [pytesseract.image_to_string(image) for image in images]
return "\n".join(extracted_texts)
except Exception as e:
raise ValueError(f"Failed to process {file_path} using PDF Reader and OCR. Error: {e}")
def main_app():
for message in st.session_state.current_conversation:
with st.chat_message(message["role"]):
st.write(message["content"])
def generate_response(prompt_input):
string_dialogue = '''
You are an educational assistant chatbot, designed to provide insightful and accurate answers in the educational domain. Your responses should be engaging and emulate a human educator to create a comfortable learning environment. Instead of simply presenting facts, aim to inspire curiosity and deeper understanding.
Context:
Understand the essence of the user's educational query.
Consider the academic level and subject matter of the question.
Access a broad knowledge base to provide well-informed responses.
Organize the response clearly and logically.
Deliver the answer in a manner that is both educational and relatable to human interaction.
Human:
'''
for dict_message in st.session_state.current_conversation:
string_dialogue += dict_message["role"].capitalize() + ": " + dict_message["content"] + "\\n\\n"
prompt = f"{string_dialogue}\n {prompt_input} Assistant: "
response_generator = g4f.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
stream=True,
)
return response_generator
if prompt := st.chat_input('Send a Message'):
st.session_state.current_conversation.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_response(prompt)
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
time.sleep(0.003)
placeholder.markdown(full_response)
placeholder.markdown(full_response)
st.session_state.current_conversation.append({"role": "assistant", "content": full_response})
save_conversations(st.session_state.conversations)
display_chats_sidebar()
if st.session_state.get('page') == "summarize_bills":
summarize_bill()
elif st.session_state.get('page') == "chat":
main_app()
else:
# Default page when the app starts or when the state is not set
main_app()