Spaces:
Runtime error
Runtime error
File size: 6,173 Bytes
126af06 3cf11b7 1c45df7 126af06 3cf11b7 126af06 3cf11b7 126af06 3cf11b7 126af06 3cf11b7 126af06 1c45df7 126af06 1c45df7 772df45 1c45df7 772df45 1c45df7 126af06 3cf11b7 1c45df7 3cf11b7 1c45df7 3cf11b7 126af06 3cf11b7 126af06 3cf11b7 126af06 3cf11b7 126af06 3cf11b7 126af06 1c45df7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import os
import pickle
import time
import g4f
import tempfile
import PyPDF2
from pdf2image import convert_from_path
import pytesseract
st.set_page_config(page_title="MEDICAL ASSISTANT")
st.markdown(
"""
<style>
.title {
text-align: center;
font-size: 2em;
font-weight: bold;
}
</style>
<div class="title">🧠 MEDICAL ASSISTANT</div>
""",
unsafe_allow_html=True
)
# Load and Save Conversations
conversations_file = "conversations.pkl"
@st.cache_data
def load_conversations():
try:
with open(conversations_file, "rb") as f:
return pickle.load(f)
except (FileNotFoundError, EOFError):
return []
def save_conversations(conversations):
temp_conversations_file = conversations_file
with open(temp_conversations_file, "wb") as f:
pickle.dump(conversations, f)
os.replace(temp_conversations_file, conversations_file)
if 'conversations' not in st.session_state:
st.session_state.conversations = load_conversations()
if 'current_conversation' not in st.session_state:
st.session_state.current_conversation = [{"role": "assistant", "content": "How may I assist you today?"}]
def truncate_string(s, length=30):
return s[:length].rstrip() + "..." if len(s) > length else s
def display_chats_sidebar():
with st.sidebar.container():
st.header('Settings')
col1, col2 = st.columns([1, 1])
with col1:
if col1.button('Start New Chat', key="new_chat"):
st.session_state.current_conversation = []
st.session_state.conversations.append(st.session_state.current_conversation)
with col2:
if col2.button('Clear All Chats', key="clear_all"):
st.session_state.conversations = []
st.session_state.current_conversation = []
if st.sidebar.button('Summarize Bills', key="summarize_bills", use_container_width=True):
st.session_state.page = "summarize_bills"
with st.sidebar.container():
st.header('Conversations')
for idx, conversation in enumerate(st.session_state.conversations):
if conversation:
chat_title_raw = next((msg["content"] for msg in conversation if msg["role"] == "user"), "New Chat")
chat_title = truncate_string(chat_title_raw)
if st.sidebar.button(f"{chat_title}", key=f"chat_button_{idx}"):
st.session_state.current_conversation = st.session_state.conversations[idx]
def summarize_bill():
st.header("Summarize Bills")
if st.button("Back to Chat"):
st.session_state.page = "chat"
uploaded_file = st.file_uploader("Upload a Bill", type=['pdf'])
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.read())
extracted_text = extract_text_from_pdf(tmp_file.name)
if st.button('Summarize'):
# Assuming g4f.ChatCompletion can be used for summarization
# Replace with appropriate summarization logic if needed
summary = g4f.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Please Summarize this bill: \n" +extracted_text}],
temperature=0.5, # You can adjust parameters as needed
max_tokens=512 # Adjust the token limit as needed
)
st.text_area("Summary", summary, height=400)
def extract_text_from_pdf(file_path: str) -> str:
try:
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page_number in range(len(reader.pages)):
page = reader.pages[page_number]
text += page.extract_text()
return text
except Exception as e:
try:
images = convert_from_path(file_path)
extracted_texts = [pytesseract.image_to_string(image) for image in images]
return "\n".join(extracted_texts)
except Exception as e:
raise ValueError(f"Failed to process {file_path} using PDF Reader and OCR. Error: {e}")
def main_app():
for message in st.session_state.current_conversation:
with st.chat_message(message["role"]):
st.write(message["content"])
def generate_response(prompt_input):
string_dialogue = "You are a helpful Medical Assistant. You will Only respond to Medical related Queries. Say Sorry to any other Type of Queries."
for dict_message in st.session_state.current_conversation:
string_dialogue += dict_message["role"].capitalize() + ": " + dict_message["content"] + "\\n\\n"
prompt = f"{string_dialogue}\n {prompt_input} Assistant: "
response_generator = g4f.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
stream=True,
)
return response_generator
if prompt := st.chat_input('Send a Message'):
st.session_state.current_conversation.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_response(prompt)
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
time.sleep(0.003)
placeholder.markdown(full_response)
placeholder.markdown(full_response)
st.session_state.current_conversation.append({"role": "assistant", "content": full_response})
save_conversations(st.session_state.conversations)
display_chats_sidebar()
if st.session_state.get('page') == "summarize_bills":
summarize_bill()
elif st.session_state.get('page') == "chat":
main_app()
else:
# Default page when the app starts or when the state is not set
main_app() |