Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import VitsModel, AutoTokenizer
|
4 |
+
import scipy.io.wavfile as wav
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
# Load the MMS-TTS Urdu model
|
9 |
+
model_name = "facebook/mms-tts-urd-script_devanagari"
|
10 |
+
model = VitsModel.from_pretrained(model_name)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Function to generate speech from text
|
14 |
+
def text_to_speech(urdu_text):
|
15 |
+
inputs = tokenizer(urdu_text, return_tensors="pt")
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
output = model(**inputs).waveform.numpy()
|
19 |
+
|
20 |
+
# Save audio as a temporary file
|
21 |
+
temp_wav_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
22 |
+
wav.write(temp_wav_file.name, model.config.sampling_rate, output)
|
23 |
+
|
24 |
+
return temp_wav_file.name # Return file path for playback & download
|
25 |
+
|
26 |
+
# Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=text_to_speech,
|
29 |
+
inputs=gr.Textbox(label="Enter Urdu Text", placeholder="یہاں اردو متن درج کریں"),
|
30 |
+
outputs=gr.Audio(label="Generated Speech"),
|
31 |
+
title="Urdu Text-to-Speech (MMS-TTS)",
|
32 |
+
description="یہ ایپلیکیشن آپ کے اردو متن کو مصنوعی آواز میں تبدیل کرتی ہے۔",
|
33 |
+
theme="compact"
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the app
|
37 |
+
iface.launch()
|