Spaces:
Runtime error
Runtime error
File size: 28,297 Bytes
7652882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import cv2
import time
import numpy as np
import torch
from utils.models import PNet,RNet,ONet
import utils.tool as utils
import utils.dataloader as image_tools
def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True):
pnet, rnet, onet = None, None, None
if p_model_path is not None:
pnet = PNet(use_cuda=use_cuda)
if(use_cuda):
print('p_model_path:{0}'.format(p_model_path))
pnet.load_state_dict(torch.load(p_model_path))
pnet.cuda()
else:
# forcing all GPU tensors to be in CPU while loading
#pnet.load_state_dict(torch.load(p_model_path, map_location=lambda storage, loc: storage))
pnet.load_state_dict(torch.load(p_model_path, map_location='cpu'))
pnet.eval()
if r_model_path is not None:
rnet = RNet(use_cuda=use_cuda)
if (use_cuda):
print('r_model_path:{0}'.format(r_model_path))
rnet.load_state_dict(torch.load(r_model_path))
rnet.cuda()
else:
rnet.load_state_dict(torch.load(r_model_path, map_location=lambda storage, loc: storage))
rnet.eval()
if o_model_path is not None:
onet = ONet(use_cuda=use_cuda)
if (use_cuda):
print('o_model_path:{0}'.format(o_model_path))
onet.load_state_dict(torch.load(o_model_path))
onet.cuda()
else:
onet.load_state_dict(torch.load(o_model_path, map_location=lambda storage, loc: storage))
onet.eval()
return pnet,rnet,onet
class MtcnnDetector(object):
"""
P,R,O net face detection and landmarks align
"""
def __init__(self,
pnet = None,
rnet = None,
onet = None,
min_face_size=12,
stride=2,
threshold=[0.6, 0.7, 0.7],
#threshold=[0.1, 0.1, 0.1],
scale_factor=0.709,
):
self.pnet_detector = pnet
self.rnet_detector = rnet
self.onet_detector = onet
self.min_face_size = min_face_size
self.stride=stride
self.thresh = threshold
self.scale_factor = scale_factor
def unique_image_format(self,im):
if not isinstance(im,np.ndarray):
if im.mode == 'I':
im = np.array(im, np.int32, copy=False)
elif im.mode == 'I;16':
im = np.array(im, np.int16, copy=False)
else:
im = np.asarray(im)
return im
def square_bbox(self, bbox):
"""
convert bbox to square
Parameters:
----------
bbox: numpy array , shape n x m
input bbox
Returns:
-------
a square bbox
"""
square_bbox = bbox.copy()
# x2 - x1
# y2 - y1
h = bbox[:, 3] - bbox[:, 1] + 1
w = bbox[:, 2] - bbox[:, 0] + 1
l = np.maximum(h,w)
# x1 = x1 + w*0.5 - l*0.5
# y1 = y1 + h*0.5 - l*0.5
square_bbox[:, 0] = bbox[:, 0] + w*0.5 - l*0.5
square_bbox[:, 1] = bbox[:, 1] + h*0.5 - l*0.5
# x2 = x1 + l - 1
# y2 = y1 + l - 1
square_bbox[:, 2] = square_bbox[:, 0] + l - 1
square_bbox[:, 3] = square_bbox[:, 1] + l - 1
return square_bbox
def generate_bounding_box(self, map, reg, scale, threshold):
"""
generate bbox from feature map
Parameters:
----------
map: numpy array , n x m x 1
detect score for each position
reg: numpy array , n x m x 4
bbox
scale: float number
scale of this detection
threshold: float number
detect threshold
Returns:
-------
bbox array
"""
stride = 2
cellsize = 12 # receptive field
t_index = np.where(map[:,:,0] > threshold)
# print('shape of t_index:{0}'.format(len(t_index)))
# print('t_index{0}'.format(t_index))
# time.sleep(5)
# find nothing
if t_index[0].size == 0:
return np.array([])
# reg = (1, n, m, 4)
# choose bounding box whose socre are larger than threshold
dx1, dy1, dx2, dy2 = [reg[0, t_index[0], t_index[1], i] for i in range(4)]
#print(dx1.shape)
#exit()
# time.sleep(5)
reg = np.array([dx1, dy1, dx2, dy2])
#print('shape of reg{0}'.format(reg.shape))
#exit()
# lefteye_dx, lefteye_dy, righteye_dx, righteye_dy, nose_dx, nose_dy, \
# leftmouth_dx, leftmouth_dy, rightmouth_dx, rightmouth_dy = [landmarks[0, t_index[0], t_index[1], i] for i in range(10)]
#
# landmarks = np.array([lefteye_dx, lefteye_dy, righteye_dx, righteye_dy, nose_dx, nose_dy, leftmouth_dx, leftmouth_dy, rightmouth_dx, rightmouth_dy])
# abtain score of classification which larger than threshold
# t_index[0]: choose the first column of t_index
# t_index[1]: choose the second column of t_index
score = map[t_index[0], t_index[1], 0]
# hence t_index[1] means column, t_index[1] is the value of x
# hence t_index[0] means row, t_index[0] is the value of y
boundingbox = np.vstack([np.round((stride * t_index[1]) / scale), # x1 of prediction box in original image
np.round((stride * t_index[0]) / scale), # y1 of prediction box in original image
np.round((stride * t_index[1] + cellsize) / scale), # x2 of prediction box in original image
np.round((stride * t_index[0] + cellsize) / scale), # y2 of prediction box in original image
# reconstruct the box in original image
score,
reg,
# landmarks
])
return boundingbox.T
def resize_image(self, img, scale):
"""
resize image and transform dimention to [batchsize, channel, height, width]
Parameters:
----------
img: numpy array , height x width x channel
input image, channels in BGR order here
scale: float number
scale factor of resize operation
Returns:
-------
transformed image tensor , 1 x channel x height x width
"""
height, width, channels = img.shape
new_height = int(height * scale) # resized new height
new_width = int(width * scale) # resized new width
new_dim = (new_width, new_height)
img_resized = cv2.resize(img, new_dim, interpolation=cv2.INTER_LINEAR) # resized image
return img_resized
def pad(self, bboxes, w, h):
"""
pad the the boxes
Parameters:
----------
bboxes: numpy array, n x 5
input bboxes
w: float number
width of the input image
h: float number
height of the input image
Returns :
------
dy, dx : numpy array, n x 1
start point of the bbox in target image
edy, edx : numpy array, n x 1
end point of the bbox in target image
y, x : numpy array, n x 1
start point of the bbox in original image
ex, ex : numpy array, n x 1
end point of the bbox in original image
tmph, tmpw: numpy array, n x 1
height and width of the bbox
"""
# width and height
tmpw = (bboxes[:, 2] - bboxes[:, 0] + 1).astype(np.int32)
tmph = (bboxes[:, 3] - bboxes[:, 1] + 1).astype(np.int32)
numbox = bboxes.shape[0]
dx = np.zeros((numbox, ))
dy = np.zeros((numbox, ))
edx, edy = tmpw.copy()-1, tmph.copy()-1
# x, y: start point of the bbox in original image
# ex, ey: end point of the bbox in original image
x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
tmp_index = np.where(ex > w-1)
edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index]
ex[tmp_index] = w - 1
tmp_index = np.where(ey > h-1)
edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index]
ey[tmp_index] = h - 1
tmp_index = np.where(x < 0)
dx[tmp_index] = 0 - x[tmp_index]
x[tmp_index] = 0
tmp_index = np.where(y < 0)
dy[tmp_index] = 0 - y[tmp_index]
y[tmp_index] = 0
return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]
return_list = [item.astype(np.int32) for item in return_list]
return return_list
def detect_pnet(self, im):
"""Get face candidates through pnet
Parameters:
----------
im: numpy array
input image array
one batch
Returns:
-------
boxes: numpy array
detected boxes before calibration
boxes_align: numpy array
boxes after calibration
"""
# im = self.unique_image_format(im)
# original wider face data
h, w, c = im.shape
net_size = 12
current_scale = float(net_size) / self.min_face_size # find initial scale
#print('imgshape:{0}, current_scale:{1}'.format(im.shape, current_scale))
im_resized = self.resize_image(im, current_scale) # scale = 1.0
current_height, current_width, _ = im_resized.shape
# fcn
all_boxes = list()
while min(current_height, current_width) > net_size:
#print('current:',current_height, current_width)
feed_imgs = []
image_tensor = image_tools.convert_image_to_tensor(im_resized)
feed_imgs.append(image_tensor)
feed_imgs = torch.stack(feed_imgs)
feed_imgs.requires_grad = True
if self.pnet_detector.use_cuda:
feed_imgs = feed_imgs.cuda()
# self.pnet_detector is a trained pnet torch model
# receptive field is 12×12
# 12×12 --> score
# 12×12 --> bounding box
cls_map, reg = self.pnet_detector(feed_imgs)
cls_map_np = image_tools.convert_chwTensor_to_hwcNumpy(cls_map.cpu())
reg_np = image_tools.convert_chwTensor_to_hwcNumpy(reg.cpu())
# print(cls_map_np.shape, reg_np.shape) # cls_map_np = (1, n, m, 1) reg_np.shape = (1, n, m 4)
# time.sleep(5)
# landmark_np = image_tools.convert_chwTensor_to_hwcNumpy(landmark.cpu())
# self.threshold[0] = 0.6
# print(cls_map_np[0,:,:].shape)
# time.sleep(4)
# boxes = [x1, y1, x2, y2, score, reg]
boxes = self.generate_bounding_box(cls_map_np[ 0, :, :], reg_np, current_scale, self.thresh[0])
#cv2.rectangle(im,(300,100),(400,200),color=(0,0,0))
#cv2.rectangle(im,(400,200),(500,300),color=(0,0,0))
# generate pyramid images
current_scale *= self.scale_factor # self.scale_factor = 0.709
im_resized = self.resize_image(im, current_scale)
current_height, current_width, _ = im_resized.shape
if boxes.size == 0:
continue
# non-maximum suppresion
keep = utils.nms(boxes[:, :5], 0.5, 'Union')
boxes = boxes[keep]
all_boxes.append(boxes)
""" img = im.copy()
bw = boxes[:,2]-boxes[:,0]
bh = boxes[:,3]-boxes[:,1]
for i in range(boxes.shape[0]):
p1=(int(boxes[i][0]+boxes[i][5]*bw[i]),int(boxes[i][1]+boxes[i][6]*bh[i]))
p2=(int(boxes[i][2]+boxes[i][7]*bw[i]),int(boxes[i][3]+boxes[i][8]*bh[i]))
cv2.rectangle(img,p1,p2,color=(0,0,0))
cv2.imshow('ss',img)
cv2.waitKey(0)
#ii+=1
exit() """
if len(all_boxes) == 0:
return None, None
all_boxes = np.vstack(all_boxes)
# print("shape of all boxes {0}".format(all_boxes.shape))
# time.sleep(5)
# merge the detection from first stage
keep = utils.nms(all_boxes[:, 0:5], 0.7, 'Union')
all_boxes = all_boxes[keep]
# boxes = all_boxes[:, :5]
# x2 - x1
# y2 - y1
bw = all_boxes[:, 2] - all_boxes[:, 0] + 1
bh = all_boxes[:, 3] - all_boxes[:, 1] + 1
# landmark_keep = all_boxes[:, 9:].reshape((5,2))
boxes = np.vstack([all_boxes[:,0],
all_boxes[:,1],
all_boxes[:,2],
all_boxes[:,3],
all_boxes[:,4],
# all_boxes[:, 0] + all_boxes[:, 9] * bw,
# all_boxes[:, 1] + all_boxes[:,10] * bh,
# all_boxes[:, 0] + all_boxes[:, 11] * bw,
# all_boxes[:, 1] + all_boxes[:, 12] * bh,
# all_boxes[:, 0] + all_boxes[:, 13] * bw,
# all_boxes[:, 1] + all_boxes[:, 14] * bh,
# all_boxes[:, 0] + all_boxes[:, 15] * bw,
# all_boxes[:, 1] + all_boxes[:, 16] * bh,
# all_boxes[:, 0] + all_boxes[:, 17] * bw,
# all_boxes[:, 1] + all_boxes[:, 18] * bh
])
boxes = boxes.T
# boxes = boxes = [x1, y1, x2, y2, score, reg] reg= [px1, py1, px2, py2] (in prediction)
align_topx = all_boxes[:, 0] + all_boxes[:, 5] * bw
align_topy = all_boxes[:, 1] + all_boxes[:, 6] * bh
align_bottomx = all_boxes[:, 2] + all_boxes[:, 7] * bw
align_bottomy = all_boxes[:, 3] + all_boxes[:, 8] * bh
# refine the boxes
boxes_align = np.vstack([ align_topx,
align_topy,
align_bottomx,
align_bottomy,
all_boxes[:, 4],
# align_topx + all_boxes[:,9] * bw,
# align_topy + all_boxes[:,10] * bh,
# align_topx + all_boxes[:,11] * bw,
# align_topy + all_boxes[:,12] * bh,
# align_topx + all_boxes[:,13] * bw,
# align_topy + all_boxes[:,14] * bh,
# align_topx + all_boxes[:,15] * bw,
# align_topy + all_boxes[:,16] * bh,
# align_topx + all_boxes[:,17] * bw,
# align_topy + all_boxes[:,18] * bh,
])
boxes_align = boxes_align.T
#remove invalid box
valindex = [True for _ in range(boxes_align.shape[0])]
for i in range(boxes_align.shape[0]):
if boxes_align[i][2]-boxes_align[i][0]<=3 or boxes_align[i][3]-boxes_align[i][1]<=3:
valindex[i]=False
#print('pnet has one smaller than 3')
else:
if boxes_align[i][2]<1 or boxes_align[i][0]>w-2 or boxes_align[i][3]<1 or boxes_align[i][1]>h-2:
valindex[i]=False
#print('pnet has one out')
boxes_align=boxes_align[valindex,:]
boxes = boxes[valindex,:]
return boxes, boxes_align
def detect_rnet(self, im, dets):
"""Get face candidates using rnet
Parameters:
----------
im: numpy array
input image array
dets: numpy array
detection results of pnet
Returns:
-------
boxes: numpy array
detected boxes before calibration
boxes_align: numpy array
boxes after calibration
"""
# im: an input image
h, w, c = im.shape
if dets is None:
return None,None
if dets.shape[0]==0:
return None, None
# (705, 5) = [x1, y1, x2, y2, score, reg]
# print("pnet detection {0}".format(dets.shape))
# time.sleep(5)
detss = dets
# return square boxes
dets = self.square_bbox(dets)
detsss = dets
# rounds
dets[:, 0:4] = np.round(dets[:, 0:4])
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
num_boxes = dets.shape[0]
'''
# helper for setting RNet batch size
batch_size = self.rnet_detector.batch_size
ratio = float(num_boxes) / batch_size
if ratio > 3 or ratio < 0.3:
print "You may need to reset RNet batch size if this info appears frequently, \
face candidates:%d, current batch_size:%d"%(num_boxes, batch_size)
'''
# cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
cropped_ims_tensors = []
for i in range(num_boxes):
try:
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = im[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
except:
print(dy[i],edy[i],dx[i],edx[i],y[i],ey[i],x[i],ex[i],tmpw[i],tmph[i])
print(dets[i])
print(detss[i])
print(detsss[i])
print(h,w)
exit()
crop_im = cv2.resize(tmp, (24, 24))
crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
# cropped_ims_tensors[i, :, :, :] = crop_im_tensor
cropped_ims_tensors.append(crop_im_tensor)
feed_imgs = torch.stack(cropped_ims_tensors)
feed_imgs.requires_grad = True
if self.rnet_detector.use_cuda:
feed_imgs = feed_imgs.cuda()
cls_map, reg = self.rnet_detector(feed_imgs)
cls_map = cls_map.cpu().data.numpy()
reg = reg.cpu().data.numpy()
# landmark = landmark.cpu().data.numpy()
keep_inds = np.where(cls_map > self.thresh[1])[0]
if len(keep_inds) > 0:
boxes = dets[keep_inds]
cls = cls_map[keep_inds]
reg = reg[keep_inds]
# landmark = landmark[keep_inds]
else:
return None, None
keep = utils.nms(boxes, 0.7)
if len(keep) == 0:
return None, None
keep_cls = cls[keep]
keep_boxes = boxes[keep]
keep_reg = reg[keep]
# keep_landmark = landmark[keep]
bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1
boxes = np.vstack([ keep_boxes[:,0],
keep_boxes[:,1],
keep_boxes[:,2],
keep_boxes[:,3],
keep_cls[:,0],
# keep_boxes[:,0] + keep_landmark[:, 0] * bw,
# keep_boxes[:,1] + keep_landmark[:, 1] * bh,
# keep_boxes[:,0] + keep_landmark[:, 2] * bw,
# keep_boxes[:,1] + keep_landmark[:, 3] * bh,
# keep_boxes[:,0] + keep_landmark[:, 4] * bw,
# keep_boxes[:,1] + keep_landmark[:, 5] * bh,
# keep_boxes[:,0] + keep_landmark[:, 6] * bw,
# keep_boxes[:,1] + keep_landmark[:, 7] * bh,
# keep_boxes[:,0] + keep_landmark[:, 8] * bw,
# keep_boxes[:,1] + keep_landmark[:, 9] * bh,
])
align_topx = keep_boxes[:,0] + keep_reg[:,0] * bw
align_topy = keep_boxes[:,1] + keep_reg[:,1] * bh
align_bottomx = keep_boxes[:,2] + keep_reg[:,2] * bw
align_bottomy = keep_boxes[:,3] + keep_reg[:,3] * bh
boxes_align = np.vstack([align_topx,
align_topy,
align_bottomx,
align_bottomy,
keep_cls[:, 0],
# align_topx + keep_landmark[:, 0] * bw,
# align_topy + keep_landmark[:, 1] * bh,
# align_topx + keep_landmark[:, 2] * bw,
# align_topy + keep_landmark[:, 3] * bh,
# align_topx + keep_landmark[:, 4] * bw,
# align_topy + keep_landmark[:, 5] * bh,
# align_topx + keep_landmark[:, 6] * bw,
# align_topy + keep_landmark[:, 7] * bh,
# align_topx + keep_landmark[:, 8] * bw,
# align_topy + keep_landmark[:, 9] * bh,
])
boxes = boxes.T
boxes_align = boxes_align.T
#remove invalid box
valindex = [True for _ in range(boxes_align.shape[0])]
for i in range(boxes_align.shape[0]):
if boxes_align[i][2]-boxes_align[i][0]<=3 or boxes_align[i][3]-boxes_align[i][1]<=3:
valindex[i]=False
print('rnet has one smaller than 3')
else:
if boxes_align[i][2]<1 or boxes_align[i][0]>w-2 or boxes_align[i][3]<1 or boxes_align[i][1]>h-2:
valindex[i]=False
print('rnet has one out')
boxes_align=boxes_align[valindex,:]
boxes = boxes[valindex,:]
""" img = im.copy()
for i in range(boxes_align.shape[0]):
p1=(int(boxes_align[i,0]),int(boxes_align[i,1]))
p2=(int(boxes_align[i,2]),int(boxes_align[i,3]))
cv2.rectangle(img,p1,p2,color=(0,0,0))
cv2.imshow('ss',img)
cv2.waitKey(0)
exit() """
return boxes, boxes_align
def detect_onet(self, im, dets):
"""Get face candidates using onet
Parameters:
----------
im: numpy array
input image array
dets: numpy array
detection results of rnet
Returns:
-------
boxes_align: numpy array
boxes after calibration
landmarks_align: numpy array
landmarks after calibration
"""
h, w, c = im.shape
if dets is None:
return None, None
if dets.shape[0]==0:
return None, None
detss = dets
dets = self.square_bbox(dets)
dets[:, 0:4] = np.round(dets[:, 0:4])
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
num_boxes = dets.shape[0]
# cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
cropped_ims_tensors = []
for i in range(num_boxes):
try:
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
# crop input image
tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1, x[i]:ex[i] + 1, :]
except:
print(dy[i],edy[i],dx[i],edx[i],y[i],ey[i],x[i],ex[i],tmpw[i],tmph[i])
print(dets[i])
print(detss[i])
print(h,w)
crop_im = cv2.resize(tmp, (48, 48))
crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
# cropped_ims_tensors[i, :, :, :] = crop_im_tensor
cropped_ims_tensors.append(crop_im_tensor)
feed_imgs = torch.stack(cropped_ims_tensors)
feed_imgs.requires_grad = True
if self.rnet_detector.use_cuda:
feed_imgs = feed_imgs.cuda()
cls_map, reg, landmark = self.onet_detector(feed_imgs)
cls_map = cls_map.cpu().data.numpy()
reg = reg.cpu().data.numpy()
landmark = landmark.cpu().data.numpy()
keep_inds = np.where(cls_map > self.thresh[2])[0]
if len(keep_inds) > 0:
boxes = dets[keep_inds]
cls = cls_map[keep_inds]
reg = reg[keep_inds]
landmark = landmark[keep_inds]
else:
return None, None
keep = utils.nms(boxes, 0.7, mode="Minimum")
if len(keep) == 0:
return None, None
keep_cls = cls[keep]
keep_boxes = boxes[keep]
keep_reg = reg[keep]
keep_landmark = landmark[keep]
bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1
align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh
align_landmark_topx = keep_boxes[:, 0]
align_landmark_topy = keep_boxes[:, 1]
boxes_align = np.vstack([align_topx,
align_topy,
align_bottomx,
align_bottomy,
keep_cls[:, 0],
# align_topx + keep_landmark[:, 0] * bw,
# align_topy + keep_landmark[:, 1] * bh,
# align_topx + keep_landmark[:, 2] * bw,
# align_topy + keep_landmark[:, 3] * bh,
# align_topx + keep_landmark[:, 4] * bw,
# align_topy + keep_landmark[:, 5] * bh,
# align_topx + keep_landmark[:, 6] * bw,
# align_topy + keep_landmark[:, 7] * bh,
# align_topx + keep_landmark[:, 8] * bw,
# align_topy + keep_landmark[:, 9] * bh,
])
boxes_align = boxes_align.T
landmark = np.vstack([
align_landmark_topx + keep_landmark[:, 0] * bw,
align_landmark_topy + keep_landmark[:, 1] * bh,
align_landmark_topx + keep_landmark[:, 2] * bw,
align_landmark_topy + keep_landmark[:, 3] * bh,
align_landmark_topx + keep_landmark[:, 4] * bw,
align_landmark_topy + keep_landmark[:, 5] * bh,
align_landmark_topx + keep_landmark[:, 6] * bw,
align_landmark_topy + keep_landmark[:, 7] * bh,
align_landmark_topx + keep_landmark[:, 8] * bw,
align_landmark_topy + keep_landmark[:, 9] * bh,
])
landmark_align = landmark.T
return boxes_align, landmark_align
def detect_face(self,img):
"""Detect face over image
"""
boxes_align = np.array([])
landmark_align =np.array([])
t = time.time()
# pnet
if self.pnet_detector:
p_boxes, boxes_align = self.detect_pnet(img)
if boxes_align is None:
return np.array([]), np.array([])
t1 = time.time() - t
t = time.time()
# rnet
if self.rnet_detector:
r_boxes, boxes_align = self.detect_rnet(img, boxes_align)
if boxes_align is None:
return np.array([]), np.array([])
t2 = time.time() - t
t = time.time()
# onet
if self.onet_detector:
boxes_align, landmark_align = self.detect_onet(img, boxes_align)
if boxes_align is None:
return np.array([]), np.array([])
t3 = time.time() - t
t = time.time()
print("time cost " + '{:.3f}'.format(t1+t2+t3) + ' pnet {:.3f} rnet {:.3f} onet {:.3f}'.format(t1, t2, t3))
return p_boxes,r_boxes,boxes_align, landmark_align
|