File size: 6,973 Bytes
7652882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
import torch.nn.functional as F
'''模型使用老师提供的示例代码,仅修改了三处版本改动'''

def weights_init(m):
    if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
        nn.init.xavier_uniform_(m.weight.data)
        nn.init.constant_(m.bias, 0.1)



class LossFn:
    def __init__(self, cls_factor=1, box_factor=1, landmark_factor=1):
        # loss function
        self.cls_factor = cls_factor
        self.box_factor = box_factor
        self.land_factor = landmark_factor
        self.loss_cls = nn.BCELoss() # binary cross entropy
        self.loss_box = nn.MSELoss() # mean square error
        self.loss_landmark = nn.MSELoss()


    def cls_loss(self,gt_label,pred_label):
        pred_label = torch.squeeze(pred_label)
        gt_label = torch.squeeze(gt_label)
        # get the mask element which >= 0, only 0 and 1 can effect the detection loss
        mask = torch.ge(gt_label,0)
        valid_gt_label = torch.masked_select(gt_label,mask)
        valid_pred_label = torch.masked_select(pred_label,mask)
        return self.loss_cls(valid_pred_label,valid_gt_label)*self.cls_factor


    def box_loss(self,gt_label,gt_offset,pred_offset):
        pred_offset = torch.squeeze(pred_offset)
        gt_offset = torch.squeeze(gt_offset)
        gt_label = torch.squeeze(gt_label)

        #get the mask element which != 0
        unmask = torch.eq(gt_label,0)
        mask = torch.eq(unmask,0)
        #convert mask to dim index
        chose_index = torch.nonzero(mask.data)
        chose_index = torch.squeeze(chose_index)
        #only valid element can effect the loss
        valid_gt_offset = gt_offset[chose_index,:]
        valid_pred_offset = pred_offset[chose_index,:]
        return self.loss_box(valid_pred_offset,valid_gt_offset)*self.box_factor


    def landmark_loss(self,gt_label,gt_landmark,pred_landmark):
        pred_landmark = torch.squeeze(pred_landmark)
        gt_landmark = torch.squeeze(gt_landmark)
        gt_label = torch.squeeze(gt_label)
        mask = torch.eq(gt_label,-2)

        chose_index = torch.nonzero(mask.data)
        chose_index = torch.squeeze(chose_index)

        valid_gt_landmark = gt_landmark[chose_index, :]
        valid_pred_landmark = pred_landmark[chose_index, :]
        return self.loss_landmark(valid_pred_landmark,valid_gt_landmark)*self.land_factor





class PNet(nn.Module):
    ''' PNet '''

    def __init__(self, is_train=False, use_cuda=True):
        super(PNet, self).__init__()
        self.is_train = is_train
        self.use_cuda = use_cuda

        # backend
        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 10, kernel_size=3, stride=1),  # conv1
            nn.PReLU(),  # PReLU1
            nn.MaxPool2d(kernel_size=2, stride=2),  # pool1
            nn.Conv2d(10, 16, kernel_size=3, stride=1),  # conv2
            nn.PReLU(),  # PReLU2
            nn.Conv2d(16, 32, kernel_size=3, stride=1),  # conv3
            nn.PReLU()  # PReLU3
        )
        # detection
        self.conv4_1 = nn.Conv2d(32, 1, kernel_size=1, stride=1)
        # bounding box regresion
        self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1, stride=1)
        # landmark localization
        self.conv4_3 = nn.Conv2d(32, 10, kernel_size=1, stride=1)

        # weight initiation with xavier
        self.apply(weights_init)

    def forward(self, x):
        x = self.pre_layer(x)
        label = torch.sigmoid(self.conv4_1(x))
        offset = self.conv4_2(x)
        # landmark = self.conv4_3(x)

        if self.is_train is True:
            # label_loss = LossUtil.label_loss(self.gt_label,torch.squeeze(label))
            # bbox_loss = LossUtil.bbox_loss(self.gt_bbox,torch.squeeze(offset))
            return label,offset
        #landmark = self.conv4_3(x)
        return label, offset





class RNet(nn.Module):
    ''' RNet '''

    def __init__(self,is_train=False, use_cuda=True):
        super(RNet, self).__init__()
        self.is_train = is_train
        self.use_cuda = use_cuda
        # backend
        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 28, kernel_size=3, stride=1),  # conv1
            nn.PReLU(),  # prelu1
            nn.MaxPool2d(kernel_size=3, stride=2),  # pool1
            nn.Conv2d(28, 48, kernel_size=3, stride=1),  # conv2
            nn.PReLU(),  # prelu2
            nn.MaxPool2d(kernel_size=3, stride=2),  # pool2
            nn.Conv2d(48, 64, kernel_size=2, stride=1),  # conv3
            nn.PReLU()  # prelu3

        )
        self.conv4 = nn.Linear(64*2*2, 128)  # conv4
        self.prelu4 = nn.PReLU()  # prelu4
        # detection
        self.conv5_1 = nn.Linear(128, 1)
        # bounding box regression
        self.conv5_2 = nn.Linear(128, 4)
        # lanbmark localization
        self.conv5_3 = nn.Linear(128, 10)
        # weight initiation weih xavier
        self.apply(weights_init)

    def forward(self, x):
        # backend
        x = self.pre_layer(x)
        x = x.view(x.size(0), -1)
        x = self.conv4(x)
        x = self.prelu4(x)
        # detection
        det = torch.sigmoid(self.conv5_1(x))
        box = self.conv5_2(x)
        # landmark = self.conv5_3(x)

        if self.is_train is True:
            return det, box
        #landmard = self.conv5_3(x)
        return det, box




class ONet(nn.Module):
    ''' RNet '''

    def __init__(self,is_train=False, use_cuda=True):
        super(ONet, self).__init__()
        self.is_train = is_train
        self.use_cuda = use_cuda
        # backend
        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1),  # conv1
            nn.PReLU(),  # prelu1
            nn.MaxPool2d(kernel_size=3, stride=2),  # pool1
            nn.Conv2d(32, 64, kernel_size=3, stride=1),  # conv2
            nn.PReLU(),  # prelu2
            nn.MaxPool2d(kernel_size=3, stride=2),  # pool2
            nn.Conv2d(64, 64, kernel_size=3, stride=1),  # conv3
            nn.PReLU(), # prelu3
            nn.MaxPool2d(kernel_size=2,stride=2), # pool3
            nn.Conv2d(64,128,kernel_size=2,stride=1), # conv4
            nn.PReLU() # prelu4
        )
        self.conv5 = nn.Linear(128*2*2, 256)  # conv5
        self.prelu5 = nn.PReLU()  # prelu5
        # detection
        self.conv6_1 = nn.Linear(256, 1)
        # bounding box regression
        self.conv6_2 = nn.Linear(256, 4)
        # lanbmark localization
        self.conv6_3 = nn.Linear(256, 10)
        # weight initiation weih xavier
        self.apply(weights_init)

    def forward(self, x):
        # backend
        x = self.pre_layer(x)
        x = x.view(x.size(0), -1)
        x = self.conv5(x)
        x = self.prelu5(x)
        # detection
        det = torch.sigmoid(self.conv6_1(x))
        box = self.conv6_2(x)
        landmark = self.conv6_3(x)
        if self.is_train is True:
            return det, box, landmark
        #landmard = self.conv5_3(x)
        return det, box, landmark