SemanticSearch-HU / src /features /semantic_retreiver.py
endre sukosd
Streamlit app fixup
eb6656d
from transformers import AutoTokenizer, AutoModel
import torch
import pickle
from sentence_transformers import util
from datetime import datetime
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
dt = datetime.now()
datetime_formatted = dt.strftime('%Y-%m-%d_%H:%M:%S')
batch_size = 1000
output_embeddings_file = f'data/preprocessed/embeddings_{batch_size}_batches_at_{datetime_formatted}.pkl'
def saveToDisc(embeddings):
with open(output_embeddings_file, "ab") as f:
pickle.dump(embeddings, f, protocol=pickle.HIGHEST_PROTOCOL)
def saveToDisc(sentences, embeddings, filename='embeddings.pkl'):
with open(filename, "ab") as f:
pickle.dump({'sentences': sentences, 'embeddings': embeddings}, f, protocol=pickle.HIGHEST_PROTOCOL)
def saveToDiscRaw(embeddings, filename='embeddings.pkl'):
with open(filename, "ab") as f:
pickle.dump(embeddings, f, protocol=pickle.HIGHEST_PROTOCOL)
#for emb in embeddings:
# torch.save(emb,f)
def loadFromDiskRaw(filename='embeddings.pkl'):
with open(filename, "rb") as f:
stored_data = pickle.load(f)
return stored_data
def loadFromDisk(filename='embeddings.pkl'):
with open(filename, "rb") as f:
stored_data = pickle.load(f)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
return stored_sentences, stored_embeddings
def findTopKMostSimilarPairs(embeddings, k):
cosine_scores = util.pytorch_cos_sim(embeddings, embeddings)
pairs = []
for i in range(len(cosine_scores)-1):
for j in range(i+1, len(cosine_scores)):
pairs.append({'index': [i, j], 'score': cosine_scores[i][j]})
pairs = sorted(pairs, key=lambda x: x['score'], reverse=True)
return pairs[0:k]
def findTopKMostSimilar(query_embedding, embeddings, k):
cosine_scores = util.pytorch_cos_sim(query_embedding, embeddings)
cosine_scores_list = cosine_scores.squeeze().tolist()
pairs = []
for idx,score in enumerate(cosine_scores_list):
pairs.append({'index': idx, 'score': score})
pairs = sorted(pairs, key=lambda x: x['score'], reverse=True)
return pairs[0:k]
def calculateEmbeddings(sentences,tokenizer,model):
tokenized_sentences = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
with torch.no_grad():
model_output = model(**tokenized_sentences)
sentence_embeddings = mean_pooling(model_output, tokenized_sentences['attention_mask'])
return sentence_embeddings
multilingual_checkpoint = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'
tokenizer = AutoTokenizer.from_pretrained(multilingual_checkpoint)
model = AutoModel.from_pretrained(multilingual_checkpoint)
raw_text_file = 'data/preprocessed/shortened_abstracts_hu_2021_09_01.txt'
concated_sentence_embeddings = None
all_sentences = []
print(datetime.now())
batch_size = 5
line = 'init'
total_read = 0
total_read_limit = 120
skip_index = 100
with open(raw_text_file) as f:
while line and total_read < total_read_limit:
count = 0
sentence_batch = []
while line and count < batch_size:
line = f.readline()
sentence_batch.append(line)
count += 1
all_sentences.extend(sentence_batch)
if total_read >= skip_index:
sentence_embeddings = calculateEmbeddings(sentence_batch,tokenizer,model)
if concated_sentence_embeddings == None:
concated_sentence_embeddings = sentence_embeddings
else:
concated_sentence_embeddings = torch.cat([concated_sentence_embeddings, sentence_embeddings], dim=0)
print(concated_sentence_embeddings.size())
#saveToDiscRaw(sentence_embeddings)
total_read += count
if total_read%5==0:
print(f'total_read:{total_read}')
print(datetime.now())
query_embedding = calculateEmbeddings(['Melyik a legnépesebb város a világon?'],tokenizer,model)
top_pairs = findTopKMostSimilar(query_embedding, concated_sentence_embeddings, 5)
for pair in top_pairs:
i = pair['index']
score = pair['score']
print("{} \t\t Score: {:.4f}".format(all_sentences[skip_index+i], score))
'''
query = ''
while query != 'exit':
query = input("Enter your query: ")
query_embedding = calculateEmbeddings([query],tokenizer,model)
'''