Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import pickle | |
from sentence_transformers import util | |
from datetime import datetime | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
return sum_embeddings / sum_mask | |
dt = datetime.now() | |
datetime_formatted = dt.strftime('%Y-%m-%d_%H:%M:%S') | |
batch_size = 1000 | |
output_embeddings_file = f'data/preprocessed/embeddings_{batch_size}_batches_at_{datetime_formatted}.pkl' | |
def saveToDisc(embeddings): | |
with open(output_embeddings_file, "ab") as f: | |
pickle.dump(embeddings, f, protocol=pickle.HIGHEST_PROTOCOL) | |
def saveToDisc(sentences, embeddings, filename='embeddings.pkl'): | |
with open(filename, "ab") as f: | |
pickle.dump({'sentences': sentences, 'embeddings': embeddings}, f, protocol=pickle.HIGHEST_PROTOCOL) | |
def saveToDiscRaw(embeddings, filename='embeddings.pkl'): | |
with open(filename, "ab") as f: | |
pickle.dump(embeddings, f, protocol=pickle.HIGHEST_PROTOCOL) | |
#for emb in embeddings: | |
# torch.save(emb,f) | |
def loadFromDiskRaw(filename='embeddings.pkl'): | |
with open(filename, "rb") as f: | |
stored_data = pickle.load(f) | |
return stored_data | |
def loadFromDisk(filename='embeddings.pkl'): | |
with open(filename, "rb") as f: | |
stored_data = pickle.load(f) | |
stored_sentences = stored_data['sentences'] | |
stored_embeddings = stored_data['embeddings'] | |
return stored_sentences, stored_embeddings | |
def findTopKMostSimilarPairs(embeddings, k): | |
cosine_scores = util.pytorch_cos_sim(embeddings, embeddings) | |
pairs = [] | |
for i in range(len(cosine_scores)-1): | |
for j in range(i+1, len(cosine_scores)): | |
pairs.append({'index': [i, j], 'score': cosine_scores[i][j]}) | |
pairs = sorted(pairs, key=lambda x: x['score'], reverse=True) | |
return pairs[0:k] | |
def findTopKMostSimilar(query_embedding, embeddings, k): | |
cosine_scores = util.pytorch_cos_sim(query_embedding, embeddings) | |
cosine_scores_list = cosine_scores.squeeze().tolist() | |
pairs = [] | |
for idx,score in enumerate(cosine_scores_list): | |
pairs.append({'index': idx, 'score': score}) | |
pairs = sorted(pairs, key=lambda x: x['score'], reverse=True) | |
return pairs[0:k] | |
def calculateEmbeddings(sentences,tokenizer,model): | |
tokenized_sentences = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') | |
with torch.no_grad(): | |
model_output = model(**tokenized_sentences) | |
sentence_embeddings = mean_pooling(model_output, tokenized_sentences['attention_mask']) | |
return sentence_embeddings | |
multilingual_checkpoint = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2' | |
tokenizer = AutoTokenizer.from_pretrained(multilingual_checkpoint) | |
model = AutoModel.from_pretrained(multilingual_checkpoint) | |
raw_text_file = 'data/preprocessed/shortened_abstracts_hu_2021_09_01.txt' | |
concated_sentence_embeddings = None | |
all_sentences = [] | |
print(datetime.now()) | |
batch_size = 5 | |
line = 'init' | |
total_read = 0 | |
total_read_limit = 120 | |
skip_index = 100 | |
with open(raw_text_file) as f: | |
while line and total_read < total_read_limit: | |
count = 0 | |
sentence_batch = [] | |
while line and count < batch_size: | |
line = f.readline() | |
sentence_batch.append(line) | |
count += 1 | |
all_sentences.extend(sentence_batch) | |
if total_read >= skip_index: | |
sentence_embeddings = calculateEmbeddings(sentence_batch,tokenizer,model) | |
if concated_sentence_embeddings == None: | |
concated_sentence_embeddings = sentence_embeddings | |
else: | |
concated_sentence_embeddings = torch.cat([concated_sentence_embeddings, sentence_embeddings], dim=0) | |
print(concated_sentence_embeddings.size()) | |
#saveToDiscRaw(sentence_embeddings) | |
total_read += count | |
if total_read%5==0: | |
print(f'total_read:{total_read}') | |
print(datetime.now()) | |
query_embedding = calculateEmbeddings(['Melyik a legnépesebb város a világon?'],tokenizer,model) | |
top_pairs = findTopKMostSimilar(query_embedding, concated_sentence_embeddings, 5) | |
for pair in top_pairs: | |
i = pair['index'] | |
score = pair['score'] | |
print("{} \t\t Score: {:.4f}".format(all_sentences[skip_index+i], score)) | |
''' | |
query = '' | |
while query != 'exit': | |
query = input("Enter your query: ") | |
query_embedding = calculateEmbeddings([query],tokenizer,model) | |
''' |