import gradio as gr from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai learn = from_pretrained_fastai("Ener3122/Seasons_Classifier") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Seasons predictor" description = "As long as there isn't water, it might guess right" gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=4), title=title, description=description, ).launch()