Spaces:
Sleeping
Sleeping
# Step 1: Import required modules | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
import docx2txt | |
import json | |
import pandas as pd | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
import whisper | |
import requests | |
from dotenv import load_dotenv | |
# Step 2: Load environment variables | |
load_dotenv() | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
# Step 3: Custom function to interact with the Groq API | |
def get_groq_embeddings(text_chunks): | |
url = "https://api.groq.com/your-endpoint" # Replace with the correct Groq API endpoint | |
headers = {"Authorization": f"Bearer {groq_api_key}"} | |
payload = {"text_chunks": text_chunks} | |
response = requests.post(url, json=payload, headers=headers) | |
if response.status_code == 200: | |
return response.json()["embeddings"] | |
else: | |
st.error(f"Error: {response.status_code} - {response.text}") | |
return None | |
# Step 4: Function to read files and extract text | |
def extract_text(file): | |
text = "" | |
try: | |
if file.name.endswith(".pdf"): | |
pdf_reader = PdfReader(file) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
elif file.name.endswith(".docx"): | |
text = docx2txt.process(file) | |
elif file.name.endswith(".txt"): | |
text = file.read().decode("utf-8") # Assuming UTF-8 by default | |
elif file.name.endswith(".csv"): | |
df = pd.read_csv(file, encoding='utf-8') # Assuming UTF-8 by default | |
text = df.to_string() | |
elif file.name.endswith(".xlsx"): | |
df = pd.read_excel(file) | |
text = df.to_string() | |
elif file.name.endswith(".json"): | |
data = json.load(file) | |
text = json.dumps(data, indent=4) | |
except UnicodeDecodeError: | |
# Handle the error by trying a different encoding | |
file.seek(0) # Reset the file pointer | |
if file.name.endswith(".txt"): | |
text = file.read().decode("ISO-8859-1") # Try Latin-1 encoding | |
elif file.name.endswith(".csv"): | |
df = pd.read_csv(file, encoding='ISO-8859-1') # Try Latin-1 encoding | |
text = df.to_string() | |
return text | |
# Step 5: Function to convert text into chunks | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
# Step 6: Function for converting chunks into embeddings and saving the FAISS index | |
def get_vector_store(text_chunks): | |
embeddings = get_groq_embeddings(text_chunks) | |
if embeddings: | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
# Ensure the directory exists | |
if not os.path.exists("faiss_index"): | |
os.makedirs("faiss_index") | |
vector_store.save_local("faiss_index") | |
print("FAISS index saved successfully.") | |
else: | |
st.error("Failed to retrieve embeddings from Groq API.") | |
# Step 7: Function to implement the Groq Model | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context. If the answer is not in | |
the provided context, just say, "The answer is not available in the context." Do not provide a wrong answer.\n\n | |
Context:\n {context}\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
# Assuming we use the Groq API for the model as well | |
# Replace with your Groq model call or other LLM API | |
model = get_groq_embeddings # Placeholder for the actual model call | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
# Step 8: Function to take inputs from user and generate response | |
def user_input(user_question): | |
embeddings = get_groq_embeddings([user_question]) | |
if embeddings: | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
return response["output_text"] | |
else: | |
return "Failed to retrieve response from Groq API." | |
# Step 9: Streamlit App | |
def main(): | |
st.set_page_config(page_title="RAG Chatbot") | |
st.header("Chat with Multiple Files using RAG and Groq π") | |
user_question = st.text_input("Ask a Question") | |
if user_question: | |
with st.spinner("Processing your question..."): | |
response = user_input(user_question) | |
st.write("Reply: ", response) | |
with st.sidebar: | |
st.title("Upload Files:") | |
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=["pdf", "docx", "txt", "csv", "xlsx", "json"]) | |
if st.button("Submit & Process"): | |
if uploaded_files: | |
with st.spinner("Processing files..."): | |
combined_text = "" | |
for file in uploaded_files: | |
combined_text += extract_text(file) + "\n" | |
text_chunks = get_text_chunks(combined_text) | |
get_vector_store(text_chunks) | |
st.success("Files processed and indexed successfully!") | |
else: | |
st.error("Please upload at least one file.") | |
if __name__ == "__main__": | |
main() | |