Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
import docx2txt
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
import os
|
8 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
9 |
+
import google.generativeai as genai
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
12 |
+
from langchain.chains.question_answering import load_qa_chain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
# Step 2: Load environment variable
|
17 |
+
load_dotenv()
|
18 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
19 |
+
|
20 |
+
# Step 3: Configure Google_API
|
21 |
+
genai.configure(api_key=api_key)
|
22 |
+
|
23 |
+
# Step 4: Function to read files and extract text
|
24 |
+
def extract_text(file):
|
25 |
+
text = ""
|
26 |
+
if file.name.endswith(".pdf"):
|
27 |
+
pdf_reader = PdfReader(file)
|
28 |
+
for page in pdf_reader.pages:
|
29 |
+
text += page.extract_text()
|
30 |
+
elif file.name.endswith(".docx"):
|
31 |
+
text = docx2txt.process(file)
|
32 |
+
elif file.name.endswith(".txt"):
|
33 |
+
text = file.read().decode("utf-8")
|
34 |
+
elif file.name.endswith(".csv"):
|
35 |
+
df = pd.read_csv(file)
|
36 |
+
text = df.to_string()
|
37 |
+
elif file.name.endswith(".xlsx"):
|
38 |
+
df = pd.read_excel(file)
|
39 |
+
text = df.to_string()
|
40 |
+
elif file.name.endswith(".json"):
|
41 |
+
data = json.load(file)
|
42 |
+
text = json.dumps(data, indent=4)
|
43 |
+
return text
|
44 |
+
|
45 |
+
# Step 5: Function to convert text into chunks
|
46 |
+
def get_text_chunks(text):
|
47 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
48 |
+
chunks = text_splitter.split_text(text)
|
49 |
+
return chunks
|
50 |
+
|
51 |
+
# Step 6: Function for converting chunks into embeddings and saving the FAISS index
|
52 |
+
def get_vector_store(text_chunks):
|
53 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
54 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
55 |
+
|
56 |
+
# Ensure the directory exists
|
57 |
+
if not os.path.exists("faiss_index"):
|
58 |
+
os.makedirs("faiss_index")
|
59 |
+
|
60 |
+
vector_store.save_local("faiss_index")
|
61 |
+
print("FAISS index saved successfully.")
|
62 |
+
|
63 |
+
# Step 7: Function to implement Gemini-Pro Model
|
64 |
+
def get_conversational_chain():
|
65 |
+
prompt_template = """
|
66 |
+
Answer the question as detailed as possible from the provided context. If the answer is not in
|
67 |
+
the provided context, just say, "The answer is not available in the context." Do not provide a wrong answer.\n\n
|
68 |
+
Context:\n {context}\n
|
69 |
+
Question: \n{question}\n
|
70 |
+
|
71 |
+
Answer:
|
72 |
+
"""
|
73 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
74 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
75 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
76 |
+
return chain
|
77 |
+
|
78 |
+
# Step 8: Function to take inputs from user and generate response
|
79 |
+
def user_input(user_question):
|
80 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
81 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
82 |
+
docs = new_db.similarity_search(user_question)
|
83 |
+
chain = get_conversational_chain()
|
84 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
85 |
+
return response["output_text"]
|
86 |
+
|
87 |
+
# Step 9: Streamlit App
|
88 |
+
def main():
|
89 |
+
st.set_page_config(page_title="RAG Chatbot")
|
90 |
+
st.header("Chat with Multiple Files using RAG and Gemini ")
|
91 |
+
|
92 |
+
user_question = st.text_input("Ask a Question")
|
93 |
+
|
94 |
+
if user_question:
|
95 |
+
with st.spinner("Processing your question..."):
|
96 |
+
response = user_input(user_question)
|
97 |
+
st.write("Reply: ", response)
|
98 |
+
|
99 |
+
with st.sidebar:
|
100 |
+
st.title("Upload Files:")
|
101 |
+
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=["pdf", "docx", "txt", "csv", "xlsx", "json"])
|
102 |
+
if st.button("Submit & Process"):
|
103 |
+
if uploaded_files:
|
104 |
+
with st.spinner("Processing files..."):
|
105 |
+
combined_text = ""
|
106 |
+
for file in uploaded_files:
|
107 |
+
combined_text += extract_text(file) + "\n"
|
108 |
+
text_chunks = get_text_chunks(combined_text)
|
109 |
+
get_vector_store(text_chunks)
|
110 |
+
st.success("Files processed and indexed successfully!")
|
111 |
+
else:
|
112 |
+
st.error("Please upload at least one file.")
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
main()
|