Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import whisper
|
4 |
+
from gtts import gTTS
|
5 |
+
from groq import Groq
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
# Set your Groq API key
|
11 |
+
os.environ['GROQ_API_KEY'] = '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'
|
12 |
+
|
13 |
+
# Initialize Whisper and Groq
|
14 |
+
whisper_model = whisper.load_model("base")
|
15 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
16 |
+
|
17 |
+
def chatbot(audio_input):
|
18 |
+
try:
|
19 |
+
# Debug: Check the type and content of audio_input
|
20 |
+
print(f"Audio input type: {type(audio_input)}")
|
21 |
+
if audio_input is None:
|
22 |
+
raise ValueError("Audio input is None. Please provide a valid audio file.")
|
23 |
+
|
24 |
+
# Step 1: Transcribe audio input using OpenAI Whisper
|
25 |
+
transcription_result = whisper_model.transcribe(audio_input)
|
26 |
+
if transcription_result is None or not transcription_result.get("text"):
|
27 |
+
raise ValueError("Whisper transcription failed or returned empty text.")
|
28 |
+
|
29 |
+
transcription = transcription_result["text"]
|
30 |
+
|
31 |
+
# Step 2: Generate response using LLaMA 8B model via Groq API
|
32 |
+
chat_completion = client.chat.completions.create(
|
33 |
+
messages=[
|
34 |
+
{
|
35 |
+
"role": "user",
|
36 |
+
"content": transcription,
|
37 |
+
}
|
38 |
+
],
|
39 |
+
model="llama3-8b-8192",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Check if the response from Groq is valid
|
43 |
+
if chat_completion and chat_completion.choices:
|
44 |
+
response_text = chat_completion.choices[0].message.content
|
45 |
+
else:
|
46 |
+
raise ValueError("Invalid response from Groq API")
|
47 |
+
|
48 |
+
# Step 3: Convert text response to speech using GTTS
|
49 |
+
if response_text.strip():
|
50 |
+
tts = gTTS(response_text)
|
51 |
+
tts.save("response.mp3")
|
52 |
+
else:
|
53 |
+
raise ValueError("Response text is empty or invalid")
|
54 |
+
|
55 |
+
# Step 4: Return the response audio and text transcription
|
56 |
+
return "response.mp3", transcription, response_text
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
# Handle and display the error
|
60 |
+
return None, transcription if 'transcription' in locals() else None, f"Error: {str(e)}"
|
61 |
+
|
62 |
+
# Define the Gradio interface
|
63 |
+
interface = gr.Interface(
|
64 |
+
fn=chatbot,
|
65 |
+
inputs=gr.Audio(type="filepath"),
|
66 |
+
outputs=[gr.Audio(type="filepath"), "text", "text"],
|
67 |
+
title="Voice-to-Voice Chatbot",
|
68 |
+
description="Speak to the chatbot and get a real-time response.",
|
69 |
+
live=True # Automatically processes input without requiring a button click
|
70 |
+
)
|
71 |
+
|
72 |
+
# Launch the Gradio app
|
73 |
+
interface.launch()
|