Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +1 -0
- app.py +155 -0
- autism_chatbot.py +158 -0
- index.faiss +3 -0
- index.pkl +3 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
index.faiss filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
from autism_chatbot import *
|
4 |
+
|
5 |
+
class StreamHandler:
|
6 |
+
def __init__(self, placeholder):
|
7 |
+
self.text = ""
|
8 |
+
self.text_container = placeholder
|
9 |
+
|
10 |
+
def append_text(self, text: str) -> None:
|
11 |
+
self.text += text
|
12 |
+
self.text_container.markdown(self.text)
|
13 |
+
|
14 |
+
class StreamingGroqLLM(GroqLLM):
|
15 |
+
stream_handler: Any = Field(None, description="Stream handler for real-time output")
|
16 |
+
|
17 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any) -> str:
|
18 |
+
completion = self.client.chat.completions.create(
|
19 |
+
messages=[{"role": "user", "content": prompt}],
|
20 |
+
model=self.model_name,
|
21 |
+
stream=True,
|
22 |
+
**kwargs
|
23 |
+
)
|
24 |
+
|
25 |
+
collected_chunks = []
|
26 |
+
collected_messages = []
|
27 |
+
|
28 |
+
for chunk in completion:
|
29 |
+
chunk_message = chunk.choices[0].delta.content
|
30 |
+
if chunk_message is not None:
|
31 |
+
collected_chunks.append(chunk_message)
|
32 |
+
collected_messages.append(chunk_message)
|
33 |
+
if self.stream_handler:
|
34 |
+
self.stream_handler.append_text(chunk_message)
|
35 |
+
time.sleep(0.05)
|
36 |
+
|
37 |
+
return ''.join(collected_messages)
|
38 |
+
|
39 |
+
class StreamingAutismResearchBot(AutismResearchBot):
|
40 |
+
def __init__(self, groq_api_key: str, stream_handler: StreamHandler, index_path: str = "index.faiss"):
|
41 |
+
self.llm = StreamingGroqLLM(
|
42 |
+
groq_api_key=groq_api_key,
|
43 |
+
model_name="llama-3.3-70b-versatile",
|
44 |
+
stream_handler=stream_handler
|
45 |
+
)
|
46 |
+
|
47 |
+
self.embeddings = HuggingFaceEmbeddings(
|
48 |
+
model_name="pritamdeka/S-PubMedBert-MS-MARCO",
|
49 |
+
model_kwargs={'device': 'cpu'}
|
50 |
+
)
|
51 |
+
self.db = FAISS.load_local("./", self.embeddings, allow_dangerous_deserialization=True)
|
52 |
+
|
53 |
+
self.memory = ConversationBufferMemory(
|
54 |
+
memory_key="chat_history",
|
55 |
+
return_messages=True,
|
56 |
+
output_key="answer"
|
57 |
+
)
|
58 |
+
|
59 |
+
self.qa_chain = self._create_qa_chain()
|
60 |
+
|
61 |
+
def main():
|
62 |
+
# Page configuration
|
63 |
+
st.set_page_config(
|
64 |
+
page_title="Autism Research Assistant",
|
65 |
+
page_icon="π§©",
|
66 |
+
layout="wide"
|
67 |
+
)
|
68 |
+
|
69 |
+
# Add custom CSS
|
70 |
+
st.markdown("""
|
71 |
+
<style>
|
72 |
+
.stApp {
|
73 |
+
max-width: 1200px;
|
74 |
+
margin: 0 auto;
|
75 |
+
}
|
76 |
+
.stMarkdown {
|
77 |
+
font-size: 16px;
|
78 |
+
}
|
79 |
+
.chat-message {
|
80 |
+
padding: 1rem;
|
81 |
+
border-radius: 0.5rem;
|
82 |
+
margin-bottom: 1rem;
|
83 |
+
}
|
84 |
+
.timestamp {
|
85 |
+
font-size: 0.8em;
|
86 |
+
color: #666;
|
87 |
+
}
|
88 |
+
</style>
|
89 |
+
""", unsafe_allow_html=True)
|
90 |
+
|
91 |
+
# Header
|
92 |
+
st.title("𧩠Autism Research Assistant")
|
93 |
+
st.markdown("""
|
94 |
+
Welcome to your AI-powered autism research assistant. I'm here to provide evidence-based
|
95 |
+
assessments and therapy recommendations based on scientific research.
|
96 |
+
""")
|
97 |
+
|
98 |
+
# Initialize session state
|
99 |
+
if 'messages' not in st.session_state:
|
100 |
+
st.session_state.messages = [
|
101 |
+
{"role": "assistant", "content": "Hello! I'm your autism research assistant. How can I help you today?"}
|
102 |
+
]
|
103 |
+
|
104 |
+
# Initialize bot
|
105 |
+
if 'bot' not in st.session_state:
|
106 |
+
st.session_state.stream_container = None
|
107 |
+
st.session_state.bot = None
|
108 |
+
|
109 |
+
# Display chat messages
|
110 |
+
for message in st.session_state.messages:
|
111 |
+
with st.chat_message(message["role"]):
|
112 |
+
st.write(f"{message['content']}")
|
113 |
+
st.caption(f"{time.strftime('%I:%M %p')}")
|
114 |
+
|
115 |
+
# Chat input
|
116 |
+
if prompt := st.chat_input("Type your message here..."):
|
117 |
+
# Display user message
|
118 |
+
with st.chat_message("user"):
|
119 |
+
st.write(prompt)
|
120 |
+
st.caption(f"{time.strftime('%I:%M %p')}")
|
121 |
+
|
122 |
+
# Add to session state
|
123 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
124 |
+
|
125 |
+
# Create a new chat message container for the assistant's response
|
126 |
+
assistant_message = st.chat_message("assistant")
|
127 |
+
with assistant_message:
|
128 |
+
# Create a placeholder for the streaming text
|
129 |
+
stream_placeholder = st.empty()
|
130 |
+
|
131 |
+
# Initialize the bot with the new stream handler if not already initialized
|
132 |
+
if st.session_state.bot is None:
|
133 |
+
stream_handler = StreamHandler(stream_placeholder)
|
134 |
+
st.session_state.bot = StreamingAutismResearchBot(
|
135 |
+
groq_api_key= os.environ.get("GROQ_API_KEY"),
|
136 |
+
stream_handler=stream_handler,
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
# Update the stream handler with the new placeholder
|
140 |
+
st.session_state.bot.llm.stream_handler.text = ""
|
141 |
+
st.session_state.bot.llm.stream_handler.text_container = stream_placeholder
|
142 |
+
|
143 |
+
# Generate response
|
144 |
+
response = st.session_state.bot.answer_question(prompt)
|
145 |
+
|
146 |
+
# Clear the streaming placeholder and display the final message
|
147 |
+
stream_placeholder.empty()
|
148 |
+
st.write(response['answer'])
|
149 |
+
st.caption(f"{time.strftime('%I:%M %p')}")
|
150 |
+
|
151 |
+
# Add bot response to session state
|
152 |
+
st.session_state.messages.append({"role": "assistant", "content": response['answer']})
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
main()
|
autism_chatbot.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import ConversationalRetrievalChain
|
2 |
+
from langchain.memory import ConversationBufferMemory
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain.llms.base import LLM
|
7 |
+
from groq import Groq
|
8 |
+
from typing import Any, List, Optional, Dict
|
9 |
+
from pydantic import Field, BaseModel
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
class GroqLLM(LLM, BaseModel):
|
14 |
+
groq_api_key: str = Field(..., description="Groq API Key")
|
15 |
+
model_name: str = Field(default="llama-3.3-70b-versatile", description="Model name to use")
|
16 |
+
client: Optional[Any] = None
|
17 |
+
|
18 |
+
def __init__(self, **data):
|
19 |
+
super().__init__(**data)
|
20 |
+
self.client = Groq(api_key=self.groq_api_key)
|
21 |
+
|
22 |
+
@property
|
23 |
+
def _llm_type(self) -> str:
|
24 |
+
return "groq"
|
25 |
+
|
26 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any) -> str:
|
27 |
+
completion = self.client.chat.completions.create(
|
28 |
+
messages=[{"role": "user", "content": prompt}],
|
29 |
+
model=self.model_name,
|
30 |
+
**kwargs
|
31 |
+
)
|
32 |
+
return completion.choices[0].message.content
|
33 |
+
|
34 |
+
@property
|
35 |
+
def _identifying_params(self) -> Dict[str, Any]:
|
36 |
+
"""Get the identifying parameters."""
|
37 |
+
return {
|
38 |
+
"model_name": self.model_name
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class AutismResearchBot:
|
43 |
+
def __init__(self, groq_api_key: str, index_path: str = "index.faiss"):
|
44 |
+
# Initialize the Groq LLM
|
45 |
+
self.llm = GroqLLM(
|
46 |
+
groq_api_key=groq_api_key,
|
47 |
+
model_name="llama-3.3-70b-versatile" # You can adjust the model as needed
|
48 |
+
)
|
49 |
+
|
50 |
+
# Load the FAISS index
|
51 |
+
self.embeddings = HuggingFaceEmbeddings(
|
52 |
+
model_name="pritamdeka/S-PubMedBert-MS-MARCO",
|
53 |
+
model_kwargs={'device': 'cpu'}
|
54 |
+
)
|
55 |
+
|
56 |
+
self.db = FAISS.load_local("./", self.embeddings, allow_dangerous_deserialization = True)
|
57 |
+
|
58 |
+
# Initialize memory
|
59 |
+
self.memory = ConversationBufferMemory(
|
60 |
+
memory_key="chat_history",
|
61 |
+
return_messages=True,
|
62 |
+
output_key = "answer"
|
63 |
+
)
|
64 |
+
|
65 |
+
# Create the RAG chain
|
66 |
+
self.qa_chain = self._create_qa_chain()
|
67 |
+
|
68 |
+
def _create_qa_chain(self):
|
69 |
+
# Define the prompt template
|
70 |
+
template = """You are an expert AI assistant specialized in autism research and diagnostics. You have access to a database of scientific papers, research documents, and diagnostic tools about autism. Use this knowledge to ask targeted questions, gather relevant information, and provide an accurate, evidence-based assessment of the type of autism the person may have. Finally, offer appropriate therapy recommendations.
|
71 |
+
|
72 |
+
Context from scientific papers use these context details only when you will at the end provide therapies don't dicusss these midway betwenn the conversation:
|
73 |
+
|
74 |
+
{context}
|
75 |
+
|
76 |
+
Chat History:
|
77 |
+
{chat_history}
|
78 |
+
|
79 |
+
Objective:
|
80 |
+
|
81 |
+
Ask a series of insightful, diagnostic questions to gather comprehensive information about the individual's or their child's behaviors, challenges, and strengths.
|
82 |
+
Analyze the responses given to these questions using knowledge from the provided research context.
|
83 |
+
Determine the type of autism the individual may have based on the gathered data.
|
84 |
+
Offer evidence-based therapy recommendations tailored to the identified type of autism.
|
85 |
+
Instructions:
|
86 |
+
|
87 |
+
Introduce yourself in the initial message. Please note not to reintroduce yourself in subsequent messages within the same chat.
|
88 |
+
Each question should be clear, accessible, and empathetic while maintaining scientific accuracy.
|
89 |
+
Ensure responses and questions demonstrate sensitivity to the diverse experiences of individuals with autism and their families.
|
90 |
+
Cite specific findings or conclusions from the research context where relevant.
|
91 |
+
Acknowledge any limitations or uncertainties in the research when analyzing responses.
|
92 |
+
Aim for conciseness in responses, ensuring clarity and brevity without losing essential details.
|
93 |
+
Initial Introduction:
|
94 |
+
ββ"
|
95 |
+
|
96 |
+
Hello, I am an AI assistant specialized in autism research and diagnostics. I am here to gather some information to help provide an evidence-based assessment and recommend appropriate therapies.
|
97 |
+
|
98 |
+
ββ"
|
99 |
+
|
100 |
+
Initial Diagnostic Question:
|
101 |
+
ββ"
|
102 |
+
|
103 |
+
To begin, can you describe some of the behaviors or challenges that prompted you to seek this assessment?
|
104 |
+
|
105 |
+
ββ"
|
106 |
+
|
107 |
+
Subsequent Questions: (Questions should follow based on the user's answers, aiming to gather necessary details concisely)
|
108 |
+
|
109 |
+
question :
|
110 |
+
{question}
|
111 |
+
|
112 |
+
Answer:"""
|
113 |
+
|
114 |
+
PROMPT = PromptTemplate(
|
115 |
+
template=template,
|
116 |
+
input_variables=["context", "chat_history", "question"]
|
117 |
+
)
|
118 |
+
|
119 |
+
# Create the chain
|
120 |
+
chain = ConversationalRetrievalChain.from_llm(
|
121 |
+
llm=self.llm,
|
122 |
+
chain_type="stuff",
|
123 |
+
retriever=self.db.as_retriever(
|
124 |
+
search_type="similarity",
|
125 |
+
search_kwargs={"k": 3}
|
126 |
+
),
|
127 |
+
memory=self.memory,
|
128 |
+
combine_docs_chain_kwargs={
|
129 |
+
"prompt": PROMPT
|
130 |
+
},
|
131 |
+
# verbose = True,
|
132 |
+
return_source_documents=True
|
133 |
+
)
|
134 |
+
|
135 |
+
return chain
|
136 |
+
|
137 |
+
def answer_question(self, question: str):
|
138 |
+
"""
|
139 |
+
Process a question and return the answer along with source documents
|
140 |
+
"""
|
141 |
+
result = self.qa_chain({"question": question})
|
142 |
+
|
143 |
+
# Extract answer and sources
|
144 |
+
answer = result['answer']
|
145 |
+
sources = result['source_documents']
|
146 |
+
|
147 |
+
# Format sources for reference
|
148 |
+
source_info = []
|
149 |
+
for doc in sources:
|
150 |
+
source_info.append({
|
151 |
+
'content': doc.page_content[:200] + "...",
|
152 |
+
'metadata': doc.metadata
|
153 |
+
})
|
154 |
+
|
155 |
+
return {
|
156 |
+
'answer': answer,
|
157 |
+
'sources': source_info
|
158 |
+
}
|
index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2f5db5d800828252b7fee1fb83824c73aa459443ccf0e66e148a928d103c565
|
3 |
+
size 7397421
|
index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b33f5ef3db502ad9564eb1d66b04e574cbc623bf8a8d6a1f3963db39f3398d15
|
3 |
+
size 5847437
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
groq
|
4 |
+
sentence-transformers
|
5 |
+
streamlit
|
6 |
+
faiss-cpu
|