EngrSamad commited on
Commit
91f550a
·
verified ·
1 Parent(s): 03b6199

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import seaborn as sns
4
+ import matplotlib.pyplot as plt
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.neighbors import KNeighborsClassifier
7
+ import gradio as gr
8
+
9
+ # Load data
10
+ nexus_bank = pd.read_csv('nexus_bank_dataa.csv')
11
+
12
+ # Preprocessing
13
+ X = nexus_bank[['salary', 'dependents']]
14
+ y = nexus_bank['defaulter']
15
+
16
+ # Train-test split
17
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)
18
+
19
+ # Model training
20
+ knn_classifier = KNeighborsClassifier()
21
+ knn_classifier.fit(X_train, y_train)
22
+
23
+ # Prediction function
24
+ def predict_defaulter(salary, dependents):
25
+ input_data = [[salary, dependents]]
26
+ knn_predict = knn_classifier.predict(input_data)
27
+ return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"
28
+
29
+ # Interface
30
+ interface = gr.Interface(
31
+ fn=predict_defaulter,
32
+ inputs=["number", "number"],
33
+ outputs="text",
34
+ title="Defaulter Prediction"
35
+ )
36
+
37
+ # Launch the interface
38
+ interface.launch()