EngrSamad commited on
Commit
eabf586
·
verified ·
1 Parent(s): 25f5977

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -9
app.py CHANGED
@@ -5,28 +5,21 @@ import matplotlib.pyplot as plt
5
  from sklearn.model_selection import train_test_split
6
  from sklearn.neighbors import KNeighborsClassifier
7
  import gradio as gr
8
-
9
  # Load data
10
- nexus_bank = pd.read_csv('C:/Users/IT zone computer/nexus_bank_dataa.csv')
11
-
12
-
13
  # Preprocessing
14
  X = nexus_bank[['salary', 'dependents']]
15
  y = nexus_bank['defaulter']
16
-
17
  # Train-test split
18
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)
19
-
20
  # Model training
21
  knn_classifier = KNeighborsClassifier()
22
  knn_classifier.fit(X_train, y_train)
23
-
24
  # Prediction function
25
  def predict_defaulter(salary, dependents):
26
  input_data = [[salary, dependents]]
27
  knn_predict = knn_classifier.predict(input_data)
28
  return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"
29
-
30
  # Interface
31
  interface = gr.Interface(
32
  fn=predict_defaulter,
@@ -34,6 +27,5 @@ interface = gr.Interface(
34
  outputs="text",
35
  title="Defaulter Prediction"
36
  )
37
-
38
  # Launch the interface
39
  interface.launch()
 
5
  from sklearn.model_selection import train_test_split
6
  from sklearn.neighbors import KNeighborsClassifier
7
  import gradio as gr
 
8
  # Load data
9
+ nexus_bank = pd.read_csv('C:/Users/IT zone computer/Desktop/knn dataset/nexus_bank_dataa.csv')
 
 
10
  # Preprocessing
11
  X = nexus_bank[['salary', 'dependents']]
12
  y = nexus_bank['defaulter']
 
13
  # Train-test split
14
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)
 
15
  # Model training
16
  knn_classifier = KNeighborsClassifier()
17
  knn_classifier.fit(X_train, y_train)
 
18
  # Prediction function
19
  def predict_defaulter(salary, dependents):
20
  input_data = [[salary, dependents]]
21
  knn_predict = knn_classifier.predict(input_data)
22
  return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"
 
23
  # Interface
24
  interface = gr.Interface(
25
  fn=predict_defaulter,
 
27
  outputs="text",
28
  title="Defaulter Prediction"
29
  )
 
30
  # Launch the interface
31
  interface.launch()