Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,28 +5,21 @@ import matplotlib.pyplot as plt
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.neighbors import KNeighborsClassifier
|
7 |
import gradio as gr
|
8 |
-
|
9 |
# Load data
|
10 |
-
nexus_bank = pd.read_csv('C:/Users/IT zone computer/nexus_bank_dataa.csv')
|
11 |
-
|
12 |
-
|
13 |
# Preprocessing
|
14 |
X = nexus_bank[['salary', 'dependents']]
|
15 |
y = nexus_bank['defaulter']
|
16 |
-
|
17 |
# Train-test split
|
18 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)
|
19 |
-
|
20 |
# Model training
|
21 |
knn_classifier = KNeighborsClassifier()
|
22 |
knn_classifier.fit(X_train, y_train)
|
23 |
-
|
24 |
# Prediction function
|
25 |
def predict_defaulter(salary, dependents):
|
26 |
input_data = [[salary, dependents]]
|
27 |
knn_predict = knn_classifier.predict(input_data)
|
28 |
return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"
|
29 |
-
|
30 |
# Interface
|
31 |
interface = gr.Interface(
|
32 |
fn=predict_defaulter,
|
@@ -34,6 +27,5 @@ interface = gr.Interface(
|
|
34 |
outputs="text",
|
35 |
title="Defaulter Prediction"
|
36 |
)
|
37 |
-
|
38 |
# Launch the interface
|
39 |
interface.launch()
|
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.neighbors import KNeighborsClassifier
|
7 |
import gradio as gr
|
|
|
8 |
# Load data
|
9 |
+
nexus_bank = pd.read_csv('C:/Users/IT zone computer/Desktop/knn dataset/nexus_bank_dataa.csv')
|
|
|
|
|
10 |
# Preprocessing
|
11 |
X = nexus_bank[['salary', 'dependents']]
|
12 |
y = nexus_bank['defaulter']
|
|
|
13 |
# Train-test split
|
14 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)
|
|
|
15 |
# Model training
|
16 |
knn_classifier = KNeighborsClassifier()
|
17 |
knn_classifier.fit(X_train, y_train)
|
|
|
18 |
# Prediction function
|
19 |
def predict_defaulter(salary, dependents):
|
20 |
input_data = [[salary, dependents]]
|
21 |
knn_predict = knn_classifier.predict(input_data)
|
22 |
return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"
|
|
|
23 |
# Interface
|
24 |
interface = gr.Interface(
|
25 |
fn=predict_defaulter,
|
|
|
27 |
outputs="text",
|
28 |
title="Defaulter Prediction"
|
29 |
)
|
|
|
30 |
# Launch the interface
|
31 |
interface.launch()
|