Spaces:
Runtime error
Runtime error
Commit
·
e4b2e32
1
Parent(s):
73b8442
Update app.py
Browse files
app.py
CHANGED
@@ -42,6 +42,7 @@ stability_api = client.StabilityInference(
|
|
42 |
whisper_from_pipeline = pipeline("automatic-speech-recognition",model="openai/whisper-medium")
|
43 |
EMBEDIDNGS = None
|
44 |
DATAFRAME_FILE = None
|
|
|
45 |
RANDOM_USER = ''.join(chr(random.randint(65,90)) for i in range(8))+f'{random.randint(1,10000000000)}'
|
46 |
print(f'{RANDOM_USER} chat started')
|
47 |
|
@@ -140,9 +141,9 @@ def search_internet(user_query:str,*,key_number:int) -> str:
|
|
140 |
|
141 |
def search_document_uploaded(user_query:str) -> str:
|
142 |
print('Searching uploaded document......')
|
143 |
-
docsearch = FAISS.load_local(folder_path = f'/tmp/{RANDOM_USER}embeddings',embeddings=EMBEDIDNGS)
|
144 |
chain = load_qa_chain(OpenAI(), chain_type="stuff")
|
145 |
-
docs =
|
146 |
return chain.run(input_documents=docs, question=user_query)
|
147 |
|
148 |
|
@@ -152,7 +153,7 @@ def ask_dataframes(user_query):
|
|
152 |
############# GET OPENAI RESPONSE
|
153 |
def get_open_ai_reponse(user_query:str)->Union[tuple,str]:
|
154 |
print(EMBEDIDNGS)
|
155 |
-
if EMBEDIDNGS is not None:
|
156 |
print('Searching document')
|
157 |
return search_document_uploaded(user_query)
|
158 |
|
@@ -286,17 +287,22 @@ def build_embeddings(file_name,file_ext):
|
|
286 |
|
287 |
global EMBEDIDNGS
|
288 |
EMBEDIDNGS = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
294 |
|
295 |
|
296 |
def ask_questions_abt_dataframes(file,file_ext):
|
297 |
print(file_ext)
|
298 |
global EMBEDIDNGS
|
299 |
EMBEDIDNGS = None
|
|
|
|
|
|
|
|
|
300 |
|
301 |
reader_function = { '.csv': pd.read_csv, '.xlsx': pd.read_excel }.get(file_ext)
|
302 |
print(reader_function.__name__)
|
|
|
42 |
whisper_from_pipeline = pipeline("automatic-speech-recognition",model="openai/whisper-medium")
|
43 |
EMBEDIDNGS = None
|
44 |
DATAFRAME_FILE = None
|
45 |
+
DOCSEARCH = None
|
46 |
RANDOM_USER = ''.join(chr(random.randint(65,90)) for i in range(8))+f'{random.randint(1,10000000000)}'
|
47 |
print(f'{RANDOM_USER} chat started')
|
48 |
|
|
|
141 |
|
142 |
def search_document_uploaded(user_query:str) -> str:
|
143 |
print('Searching uploaded document......')
|
144 |
+
# docsearch = FAISS.load_local(folder_path = f'/tmp/{RANDOM_USER}embeddings',embeddings=EMBEDIDNGS)
|
145 |
chain = load_qa_chain(OpenAI(), chain_type="stuff")
|
146 |
+
docs = DOCSEARCH.similarity_search(user_query)
|
147 |
return chain.run(input_documents=docs, question=user_query)
|
148 |
|
149 |
|
|
|
153 |
############# GET OPENAI RESPONSE
|
154 |
def get_open_ai_reponse(user_query:str)->Union[tuple,str]:
|
155 |
print(EMBEDIDNGS)
|
156 |
+
if (EMBEDIDNGS is not None) and (DOCSEARCH is not None):
|
157 |
print('Searching document')
|
158 |
return search_document_uploaded(user_query)
|
159 |
|
|
|
287 |
|
288 |
global EMBEDIDNGS
|
289 |
EMBEDIDNGS = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
|
290 |
+
global DOCSEARCH
|
291 |
+
DOCSEARCH = FAISS.from_texts(texts, EMBEDIDNGS)
|
292 |
+
# if not os.path.exists(f'/tmp/{RANDOM_USER}embeddings'):
|
293 |
+
# os.mkdir(f'/tmp/{RANDOM_USER}embeddings')
|
294 |
+
# docsearch.save_local(f'/tmp/{RANDOM_USER}embeddings')
|
295 |
+
# print(f'Embeddings created to /tmp/{RANDOM_USER}embeddings')
|
296 |
|
297 |
|
298 |
def ask_questions_abt_dataframes(file,file_ext):
|
299 |
print(file_ext)
|
300 |
global EMBEDIDNGS
|
301 |
EMBEDIDNGS = None
|
302 |
+
global DOCSEARCH
|
303 |
+
DOCSEARCH = None
|
304 |
+
|
305 |
+
|
306 |
|
307 |
reader_function = { '.csv': pd.read_csv, '.xlsx': pd.read_excel }.get(file_ext)
|
308 |
print(reader_function.__name__)
|