Spaces:
Runtime error
Runtime error
import os | |
import time | |
import re | |
import pathlib | |
import requests | |
import openai | |
from embedchain import App | |
from serpapi import GoogleSearch | |
from pptx import Presentation | |
from pptx.util import Inches | |
from pptx import Presentation | |
from pptx.util import Inches, Pt | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import qrcode | |
from pathlib import Path | |
from multiprocessing import cpu_count | |
import requests | |
import io | |
import os | |
from PIL import Image | |
from diffusers import ( | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
DEISMultistepScheduler, | |
HeunDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
) | |
openai.api_key = os.environ['OPENAI_API_KEY'] | |
def gpt(user_prompt: str) -> str: | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=user_prompt, | |
temperature=0, | |
max_tokens=200, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0) | |
return response["choices"][0]["text"] | |
def get_results(query:str, topic:str,index=0)->list[str]: | |
combined_q = gpt(f'combine these "{query}" + "{topic}" words and generate one heading') | |
print(f'{query = }, {topic = }, {combined_q = }') | |
try: | |
params = { | |
"engine": "google", | |
"q": combined_q, | |
"api_key": os.environ[f'SERPAPI_API_KEY{index}'] | |
} | |
search = GoogleSearch(params) | |
results = search.get_dict() | |
except Exception as e: | |
print(e) | |
get_results(query, topic,index=index+1) | |
organic_results = results["organic_results"] | |
return organic_results | |
def extract_points(query:str, topic:str)->list[str]: | |
# print('--Sleep--') | |
time.sleep(60) | |
organic_results = get_results(query, topic) | |
embd_chain = App() | |
for index, dct in enumerate(organic_results): | |
try: | |
embd_chain.add('web_page',dct['link']) | |
except requests.exceptions.SSLError: | |
continue | |
except openai.error.RateLimitError: | |
break | |
print('--sleep--') | |
time.sleep(60) | |
embd_chain_q = embd_chain.query(f'highlight 7 important points') | |
return | |
# Add the title slide | |
def add_slide(prs, title, content, title_font_size=Pt(36), content_font_size=Pt(18)): | |
slide_layout = prs.slide_layouts[1] # Use the layout for "Title and Content" | |
slide = prs.slides.add_slide(slide_layout) | |
# Set the title and content text | |
slide.shapes.title.text = title | |
text_box = slide.placeholders[1] | |
text_box.text = content | |
# Change the font size for title and content text | |
title_text_frame = slide.shapes.title.text_frame | |
content_text_frame = text_box.text_frame | |
for paragraph in title_text_frame.paragraphs: | |
for run in paragraph.runs: | |
run.font.size = title_font_size | |
for paragraph in content_text_frame.paragraphs: | |
for run in paragraph.runs: | |
run.font.size = content_font_size | |
def add_title_slide(prs, title, title_font_size=Pt(44)): | |
slide_layout = prs.slide_layouts[0] # Use the layout for "Title Slide" | |
slide = prs.slides.add_slide(slide_layout) | |
# Set the title and subtitle text | |
slide.shapes.title.text = title | |
# Change the font size for title and subtitle text | |
title_text_frame = slide.shapes.title.text_frame | |
for paragraph in title_text_frame.paragraphs: | |
for run in paragraph.runs: | |
run.font.size = title_font_size | |
def main(user_query:str)->dict[str, str]: | |
res = gpt(f'You are assisting me in creating a presentation on "{user_query}" Please generate 5 informative side headings for the slides. Each heading should be concise and reflect a key aspect of the topic.') | |
topics = re.sub(r'[\d.]','',res.strip()).split('\n') | |
print(f'{topics = }') | |
ppt_points = { topic: extract_points(topic, user_query) | |
for topic in topics} | |
prs = Presentation() | |
add_title_slide(prs,user_query, title_font_size=Pt(44)) | |
# Data for content slides | |
# Adding each key-value pair as a slide in the presentation with custom font sizes | |
for key, value in ppt_points.items(): | |
add_slide(prs, key, value, title_font_size=Pt(36), content_font_size=Pt(18)) | |
# Save the presentation | |
prs.save(f'{user_query}.pptx') | |
return f'{user_query}.pptx' | |
controlnet = ControlNetModel.from_pretrained( | |
"monster-labs/control_v1p_sd15_qrcode_monster", | |
torch_dtype=torch.float16 | |
).to('cpu') | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16 | |
) | |
SAMPLER_MAP = { | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True), | |
"Heun": lambda config: HeunDiscreteScheduler.from_config(config), | |
"Euler a": lambda config: EulerAncestralDiscreteScheduler.from_config(config), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
"DDIM": lambda config: DDIMScheduler.from_config(config), | |
"DEIS": lambda config: DEISMultistepScheduler.from_config(config), | |
} | |
def create_code(content: str): | |
qr = qrcode.QRCode( | |
version=1, | |
error_correction=qrcode.constants.ERROR_CORRECT_H, | |
box_size=16, | |
border=0, | |
) | |
qr.add_data(content) | |
qr.make(fit=True) | |
img = qr.make_image(fill_color="black", back_color="white") | |
# find smallest image size multiple of 256 that can fit qr | |
offset_min = 8 * 16 | |
w, h = img.size | |
w = (w + 255 + offset_min) // 256 * 256 | |
h = (h + 255 + offset_min) // 256 * 256 | |
if w > 1024: | |
raise gr.Error("QR code is too large, please use a shorter content") | |
bg = Image.new('L', (w, h), 128) | |
# align on 16px grid | |
coords = ((w - img.size[0]) // 2 // 16 * 16, | |
(h - img.size[1]) // 2 // 16 * 16) | |
bg.paste(img, coords) | |
return bg | |
def inference( | |
qr_code_content: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 10.0, | |
controlnet_conditioning_scale: float = 2.0, | |
seed: int = -1, | |
sampler="Euler a", | |
): | |
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) | |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
print("Generating QR Code from content") | |
qrcode_image = create_code(qr_code_content) | |
# hack due to gradio examples | |
init_image = qrcode_image | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=qrcode_image, | |
width=qrcode_image.width, | |
height=qrcode_image.height, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
num_inference_steps=40, | |
) | |
return out.images[0] | |
import gradio as gr | |
with gr.Blocks() as demo: | |
with gr.Tab('Presentation'): | |
with gr.Row(): | |
with gr.Column(): | |
txt = gr.Textbox(label="Your Query") | |
with gr.Column(): | |
file = gr.File() | |
btn = gr.Button('Create Presentation') | |
btn.click(main, txt, file) | |
with gr.Tab('QR Code'): | |
gr.Markdown('This feature needs GPU to run') | |
with gr.Row(): | |
with gr.Column(): | |
qr_code_content = gr.Textbox( | |
label="QR Code Content or URL", | |
info="The text you want to encode into the QR code", | |
value="", | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Prompt that guides the generation towards", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="ugly, disfigured, low quality, blurry, nsfw", | |
info="Prompt that guides the generation away from", | |
) | |
with gr.Accordion( | |
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below", | |
open=True, | |
): | |
controlnet_conditioning_scale = gr.Slider( | |
minimum=0.5, | |
maximum=2.5, | |
step=0.01, | |
value=1.5, | |
label="Controlnet Conditioning Scale", | |
info="""Controls the readability/creativity of the QR code. | |
High values: The generated QR code will be more readable. | |
Low values: The generated QR code will be more creative. | |
""" | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=25.0, | |
step=0.25, | |
value=7, | |
label="Guidance Scale", | |
info="Controls the amount of guidance the text prompt guides the image generation" | |
) | |
sampler = gr.Dropdown(choices=list( | |
SAMPLER_MAP.keys()), value="Euler a", label="Sampler") | |
seed = gr.Number( | |
minimum=-1, | |
maximum=9999999999, | |
step=1, | |
value=2313123, | |
label="Seed", | |
randomize=True, | |
info="Seed for the random number generator. Set to -1 for a random seed" | |
) | |
with gr.Row(): | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image = gr.Image(label="Result Image", elem_id="result_image") | |
run_btn.click( | |
inference, | |
inputs=[ | |
qr_code_content, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
seed, | |
sampler, | |
], | |
outputs=[result_image], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"test", | |
"Baroque rococo architecture, architectural photography, post apocalyptic New York, hyperrealism, [roots], hyperrealistic, octane render, cinematic, hyper detailed, 8K", | |
"", | |
7, | |
1.6, | |
2592353769, | |
"Euler a", | |
], | |
[ | |
"https://qrcodemonster.art", | |
"a centered render of an ancient tree covered in bio - organic micro organisms growing in a mystical setting, cinematic, beautifully lit, by tomasz alen kopera and peter mohrbacher and craig mullins, 3d, trending on artstation, octane render, 8k", | |
"", | |
7, | |
1.57, | |
259235398, | |
"Euler a", | |
], | |
[ | |
"test", | |
"3 cups of coffee with coffee beans around", | |
"", | |
7, | |
1.95, | |
1889601353, | |
"Euler a", | |
], | |
[ | |
"https://huggingface.co", | |
"A top view picture of a sandy beach with a sand castle, beautiful lighting, 8k, highly detailed", | |
"sky", | |
7, | |
1.15, | |
46200, | |
"Euler a", | |
], | |
[ | |
"test", | |
"A top view picture of a sandy beach, organic shapes, beautiful lighting, bumps and shadows, 8k, highly detailed", | |
"sky, water, squares", | |
7, | |
1.25, | |
46220, | |
"Euler a", | |
], | |
], | |
fn=inference, | |
inputs=[ | |
qr_code_content, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
seed, | |
sampler, | |
], | |
outputs=[result_image], | |
) | |
demo.launch(debug=True) | |