Upload 3 files
Browse files- main.py +110 -0
- main.yml +27 -0
- requirements.txt +13 -0
main.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from langchain_community.llms import LlamaCpp
|
3 |
+
import os
|
4 |
+
app = Flask(__name__)
|
5 |
+
|
6 |
+
n_gpu_layers = 0
|
7 |
+
n_batch = 1024
|
8 |
+
|
9 |
+
|
10 |
+
llm = LlamaCpp(
|
11 |
+
model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file
|
12 |
+
temperature=0.1,
|
13 |
+
n_gpu_layers=n_gpu_layers,
|
14 |
+
n_batch=n_batch,
|
15 |
+
verbose=True,
|
16 |
+
n_ctx=4096
|
17 |
+
)
|
18 |
+
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf')
|
19 |
+
print("model size ====> :", file_size.st_size, "bytes")
|
20 |
+
|
21 |
+
|
22 |
+
@app.route('/', methods=['POST'])
|
23 |
+
def get_skills():
|
24 |
+
cv_body = request.json.get('cv_body')
|
25 |
+
|
26 |
+
# Simple inference example
|
27 |
+
output = llm(
|
28 |
+
f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>",
|
29 |
+
max_tokens=256, # Generate up to 256 tokens
|
30 |
+
stop=["<|end|>"],
|
31 |
+
echo=True, # Whether to echo the prompt
|
32 |
+
)
|
33 |
+
|
34 |
+
return jsonify({'skills': output})
|
35 |
+
|
36 |
+
if __name__ == '__main__':
|
37 |
+
app.run()
|
38 |
+
from flask import Flask, request, jsonify
|
39 |
+
import nltk
|
40 |
+
from gensim.models import Word2Vec
|
41 |
+
import numpy as np
|
42 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
43 |
+
import matplotlib.pyplot as plt
|
44 |
+
import io
|
45 |
+
import base64
|
46 |
+
|
47 |
+
nltk.download('punkt')
|
48 |
+
|
49 |
+
app = Flask(__name__)
|
50 |
+
|
51 |
+
texts = [
|
52 |
+
"This is a sample text.",
|
53 |
+
"Another example of text.",
|
54 |
+
"More texts to compare."
|
55 |
+
]
|
56 |
+
|
57 |
+
tokenized_texts = [nltk.word_tokenize(text.lower()) for text in texts]
|
58 |
+
|
59 |
+
word_embeddings_model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
|
60 |
+
|
61 |
+
def text_embedding(text):
|
62 |
+
words = nltk.word_tokenize(text.lower())
|
63 |
+
embeddings = [word_embeddings_model.wv[word] for word in words if word in word_embeddings_model.wv]
|
64 |
+
if embeddings:
|
65 |
+
return np.mean(embeddings, axis=0)
|
66 |
+
else:
|
67 |
+
return np.zeros(word_embeddings_model.vector_size)
|
68 |
+
|
69 |
+
@app.route('/process', methods=['POST'])
|
70 |
+
def process():
|
71 |
+
data = request.get_json()
|
72 |
+
input_text = data.get('input_text', '')
|
73 |
+
|
74 |
+
if not input_text:
|
75 |
+
return jsonify({'error': 'No input text provided'}), 400
|
76 |
+
|
77 |
+
input_embedding = text_embedding(input_text)
|
78 |
+
text_embeddings = [text_embedding(text) for text in texts]
|
79 |
+
|
80 |
+
similarities = cosine_similarity([input_embedding], text_embeddings).flatten()
|
81 |
+
similarities_percentages = [similarity * 100 for similarity in similarities]
|
82 |
+
|
83 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
84 |
+
texts_for_plotting = [f"Text {i+1}" for i in range(len(texts))]
|
85 |
+
ax.bar(texts_for_plotting, similarities_percentages)
|
86 |
+
ax.set_ylabel('Similarity (%)')
|
87 |
+
ax.set_xlabel('Texts')
|
88 |
+
ax.set_title('Similarity of Input Text with other texts')
|
89 |
+
plt.xticks(rotation=45, ha='right')
|
90 |
+
plt.tight_layout()
|
91 |
+
|
92 |
+
buf = io.BytesIO()
|
93 |
+
plt.savefig(buf, format='png')
|
94 |
+
buf.seek(0)
|
95 |
+
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
|
96 |
+
plt.close()
|
97 |
+
|
98 |
+
sorted_indices = np.argsort(similarities)[::-1]
|
99 |
+
similar_texts = [(similarities[idx] * 100, texts[idx]) for idx in sorted_indices[:3]]
|
100 |
+
|
101 |
+
response = {
|
102 |
+
'similarities': similarities_percentages,
|
103 |
+
'plot': img_base64,
|
104 |
+
'most_similar_texts': similar_texts
|
105 |
+
}
|
106 |
+
|
107 |
+
return jsonify(response)
|
108 |
+
|
109 |
+
if __name__ == '__main__':
|
110 |
+
app.run(host='0.0.0.0', port=8080, debug=True)
|
main.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Python application
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: [ main ]
|
6 |
+
pull_request:
|
7 |
+
branches: [ main ]
|
8 |
+
|
9 |
+
jobs:
|
10 |
+
build:
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
|
13 |
+
steps:
|
14 |
+
- uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python 3.x
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.x'
|
20 |
+
|
21 |
+
- name: Install dependencies
|
22 |
+
run: |
|
23 |
+
python -m pip install --upgrade pip
|
24 |
+
pip install -r requirements.txt
|
25 |
+
|
26 |
+
- name: Run the app
|
27 |
+
run: python app.py
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
langchain
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
gensim
|
6 |
+
scikit-learn
|
7 |
+
llama-cpp-python
|
8 |
+
huggingface-hub
|
9 |
+
langchain-experimental
|
10 |
+
scipy==1.10.1
|
11 |
+
gunicorn
|
12 |
+
langchain-community
|
13 |
+
nltk
|