Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
-
import
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
5 |
import torch
|
6 |
from threading import Thread
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import faiss
|
9 |
import fitz # PyMuPDF
|
10 |
-
|
11 |
-
# 환경 변수에서 Hugging Face 토큰 가져오기
|
12 |
-
token = os.environ.get("HF_TOKEN")
|
13 |
-
|
14 |
|
15 |
# 임베딩 모델 로드
|
16 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
@@ -23,17 +19,36 @@ def extract_text_from_pdf(pdf_path):
|
|
23 |
text += page.get_text()
|
24 |
return text
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
law_embeddings = ST.encode(law_sentences)
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Hugging Face에서 법률 상담 데이터셋 로드
|
39 |
dataset = load_dataset("jihye-moon/LawQA-Ko")
|
@@ -44,29 +59,21 @@ data = data.map(lambda x: {"question_embedding": ST.encode(x["question"])}, batc
|
|
44 |
data.add_faiss_index(column="question_embedding")
|
45 |
|
46 |
# LLaMA 모델 설정
|
47 |
-
model_id = "
|
48 |
-
|
49 |
-
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
50 |
-
)
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
model_id,
|
54 |
torch_dtype=torch.bfloat16,
|
55 |
device_map="auto",
|
56 |
-
quantization_config=bnb_config,
|
57 |
-
token=token
|
58 |
)
|
59 |
|
60 |
SYS_PROMPT = """You are an assistant for answering legal questions.
|
61 |
You are given the extracted parts of legal documents and a question. Provide a conversational answer.
|
62 |
If you don't know the answer, just say "I do not know." Don't make up an answer.
|
63 |
-
you must answer korean.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
query_embedding = ST.encode([query])
|
68 |
-
D, I = index.search(query_embedding, k)
|
69 |
-
return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])]
|
70 |
|
71 |
# 법률 상담 데이터 검색 함수
|
72 |
def search_qa(query, k=3):
|
@@ -97,11 +104,7 @@ def talk(prompt, history):
|
|
97 |
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
|
98 |
|
99 |
# 모델에게 생성 지시
|
100 |
-
input_ids = tokenizer.
|
101 |
-
messages,
|
102 |
-
add_generation_prompt=True,
|
103 |
-
return_tensors="pt"
|
104 |
-
).to(model.device)
|
105 |
|
106 |
streamer = TextIteratorStreamer(
|
107 |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
@@ -147,4 +150,4 @@ demo = gr.ChatInterface(
|
|
147 |
)
|
148 |
|
149 |
# Gradio 데모 실행
|
150 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import faiss
|
8 |
import fitz # PyMuPDF
|
9 |
+
import os
|
|
|
|
|
|
|
10 |
|
11 |
# 임베딩 모델 로드
|
12 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
|
19 |
text += page.get_text()
|
20 |
return text
|
21 |
|
22 |
+
# 기본 제공 PDF 파일 경로
|
23 |
+
default_pdf_path = "laws.pdf"
|
24 |
+
|
25 |
+
# FAISS 인덱스 초기화
|
26 |
+
index = None
|
27 |
+
law_sentences = []
|
28 |
+
|
29 |
+
# 기본 제공 PDF 파일 처리 함수
|
30 |
+
def process_default_pdf():
|
31 |
+
global index, law_sentences
|
32 |
|
33 |
+
# PDF에서 텍스트 추출
|
34 |
+
law_text = extract_text_from_pdf(default_pdf_path)
|
|
|
35 |
|
36 |
+
# 문장을 나누고 임베딩 생성
|
37 |
+
law_sentences = law_text.split('\n')
|
38 |
+
law_embeddings = ST.encode(law_sentences)
|
39 |
+
|
40 |
+
# FAISS 인덱스 생성 및 임베딩 추가
|
41 |
+
index = faiss.IndexFlatL2(law_embeddings.shape[1])
|
42 |
+
index.add(law_embeddings)
|
43 |
+
|
44 |
+
# 처음에 기본 PDF 파일 처리
|
45 |
+
process_default_pdf()
|
46 |
+
|
47 |
+
# 법률 문서 검색 함수
|
48 |
+
def search_law(query, k=5):
|
49 |
+
query_embedding = ST.encode([query])
|
50 |
+
D, I = index.search(query_embedding, k)
|
51 |
+
return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])]
|
52 |
|
53 |
# Hugging Face에서 법률 상담 데이터셋 로드
|
54 |
dataset = load_dataset("jihye-moon/LawQA-Ko")
|
|
|
59 |
data.add_faiss_index(column="question_embedding")
|
60 |
|
61 |
# LLaMA 모델 설정
|
62 |
+
model_id = "google/gemma-2-2b-it"
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
64 |
model = AutoModelForCausalLM.from_pretrained(
|
65 |
model_id,
|
66 |
torch_dtype=torch.bfloat16,
|
67 |
device_map="auto",
|
|
|
|
|
68 |
)
|
69 |
|
70 |
SYS_PROMPT = """You are an assistant for answering legal questions.
|
71 |
You are given the extracted parts of legal documents and a question. Provide a conversational answer.
|
72 |
If you don't know the answer, just say "I do not know." Don't make up an answer.
|
73 |
+
you must answer korean.
|
74 |
+
You're a LAWEYE legal advisor bot. Your job is to provide korean legal assistance by asking questions to korean speaker, then offering advice or guidance based on the information and law provisions provided. Make sure you only respond with one question at a time.
|
75 |
+
...
|
76 |
+
"""
|
|
|
|
|
|
|
77 |
|
78 |
# 법률 상담 데이터 검색 함수
|
79 |
def search_qa(query, k=3):
|
|
|
104 |
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
|
105 |
|
106 |
# 모델에게 생성 지시
|
107 |
+
input_ids = tokenizer(messages, return_tensors="pt").to(model.device).input_ids
|
|
|
|
|
|
|
|
|
108 |
|
109 |
streamer = TextIteratorStreamer(
|
110 |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
|
|
150 |
)
|
151 |
|
152 |
# Gradio 데모 실행
|
153 |
+
demo.launch(debug=True)
|